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Abstract: Resource pooling is a fundamental concept that has many applications in Operations Management

for reducing and hedging uncertainty. An important problem in resource pooling is to decide (1) the capacity

level of pooled resources in anticipation of random demand of multiple customers and (2) how the capacity

should be allocated to fulfill customer demands after demand realization. In this paper, we present a general

framework to study this two-stage problem when customers require individual and possibly different service

levels. Our modeling framework generalizes and unifies many existing models in the literature, and includes

second-stage allocation costs.

We propose a simple randomized rationing policy for any fixed feasible capacity level. Our main result is

the optimality of this policy for very general service level constraints, including Type I and Type II constraints

and beyond. The result follows from a semi-infinite linear programming formulation of the problem and its

dual. As a corollary, we also prove the optimality of index policies for a large class of problems when the set

of feasible fulfilled demands is a polymatroid.

1. Introduction

Inventory pooling is an important operational strategy that allows a firm to mitigate demand

uncertainty by serving different geographic markets using a common pool of inventory. By aggre-

gating demand across different locations, high demand from one location is likely to be offset by

low demand from another. Consequently, the variability of the aggregate demand is reduced, which

in turn reduces the need for safety stock (Eppen, 1979).

More specifically, consider an inventory system with n locations facing independent and identi-

cally distributed (i.i.d.) demands. Each location has a target service level, say 95%, i.e., its demand

must be fully satisfied with a target probability of 95%. If each location maintains a separate

inventory and safety stock, the system-wide safety stock would grow linearly in n. If all locations

are served by a common pool of inventory, the standard deviation of the aggregate demand is

of the order
√
n. When the demands are i.i.d. normal distributions with a standard deviation of

σ, then the total safety stock is 1.645 ·
√
nσ units, where the constant 1.645 is the safety factor

corresponding to the target service level 95%. This so-called square-root law illustrates the benefit

of inventory pooling.

In fact, the square-root law underestimates the benefit of pooling when the firm’s goal is to

achieve a target service level for each individual location. With a safety stock of 1.645
√
nσ units,
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it is guaranteed that the aggregate demand is completely satisfied with 95% probability. When

there is a system-wide shortage, it is still possible to allocate the limited inventory to locations

in such a way that some locations can have their demand completely fulfilled, and those locations

may achieve a service level higher than 95%. Therefore, intuitively, less safety stock is needed if

the target is 95% individual service level! In fact, when n= 12 and the coefficient of variation of

the normal distribution is 0.3, the system does not have to hold any safety stock to achieve 95%

individual service level for all locations! The key issue here is how the inventory should be allocated

when the aggregate demand exceeds the total inventory. This is the main question that we try to

answer in this paper.

Inventory pooling is just one application of resource pooling in operations management. Other

important applications include process flexibility (Jordan and Graves (1995), Van Mieghem (1998),

Asadpour et al. (2020)), component commonality (Gerchak and Henig, 1989), transshipment

(Anupindi et al., 2001), delayed differentiation (Lee, 1996), product substitution (Bassok et al.,

1999); see for example Cachon and Terwiesch (2008). Individual service constraints can arise in

many of these applications. This motivates us to study capacity rationing policies in a more general

setting that can capture these applications.

1.1. Problem Formulation

We now present a general framework to model capacity allocation and demand fulfillment with

individual service constraints. A firm serves n customers, denoted byN = {1,2, · · · , n}. The demand

of customer j ∈N is D̃j and D̃ := (D̃1, D̃2, . . . , D̃n) follows a joint distribution F with a bounded

second moment. Demand of each customer can be fulfilled by utilizing one or more types of resources

from the set of m resources, denoted by M= {1,2, · · · ,m}.

The firm faces a two-stage decision problem. In the first stage, knowing the joint distribution F

but not the actual demand of the customers, the firm has to decide the capacity level of the resources

c := (c1, c2, . . . , cm), where ci is the capacity level of resource i∈M. The capacity investment cost is

p(c). In the second stage, the demand realizes, after which the capacity of the resources is allocated

and the demand of the customers is fulfilled according to a capacity rationing policy, denoted by

ϕ̃. We denote by sj(ϕ̃,c,D) the fulfilled demand of customer j under policy ϕ̃ when the capacity

level is c and the realized demand is D= (D1,D2, . . . ,Dn), and let s(ϕ̃,c,D) = (sj(ϕ̃,c,D), j ∈N).

Notice that sj(ϕ̃,c,D) can be a random variable even for fixed demand D if ϕ̃ is allowed to be

a randomized policy. Similarly, we denote by yij(ϕ̃,c,D) the allocation of resource i to customer

j and let y(ϕ̃,c,D) = (yij(ϕ̃,c,D), i∈M, j ∈N ). The allocation cost is denoted by f(y(ϕ̃,c,D)).

We assume that f(·) is a linear function throughout the paper.
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Regardless of the rationing policy used, the allocation must satisfy the following constraints. More

specifically, given c andD, the set of all feasible fulfilled demands and resource allocation is denoted

by P (c,D). By specializing the choices P (c,D), the feasible set captures the capacity consumption

and demand fulfillment constraints of many capacity allocation models such as inventory pooling,

process flexibility, and assemble-to-order, etc., as illustrated below.

• In inventory pooling, N is the set of locations, M is a singleton, and

P (c,D) =

{
(s,y)≥ 0 :

n∑
j=1

yj ≤ c, y= s s≤D

}
. (1)

This special case will also be referred to as the single resource allocation problem.

• In process flexibility, N is the set of products, M is the set of plants, and

P (c,D) =

(s,y)≥ 0 : s≤D,
∑

j∈N :(i,j)∈E

yij ≤ ci ∀i∈M,
∑

i∈M:(i,j)∈E

yij = sj ∀j ∈N

 (2)

where the set E represents the design of the flexible system: (i, j) ∈ E if product j can be

produced by plant i.

• In an assemble-to-order system, N is the set of end products, M is the set of components,

P (c,D) := {(s,y)≥ 0 : As≤ c, s≤D, yij =Aijsj, ∀i∈M, j ∈N} (3)

where Aij ≥ 0 is the amount of component i that each unit of product j requires. In a special

case, the so-called generalized W-system, A is specialized as

A=

[
In×n

1T
n

]
(4)

where 1n is the n-dimensional column vector of all ones and In×n is the n×n identity matrix.

In this system, each end product j requires two components, a product-specific component j

and the component n+1, the latter of which is common to all end products.

Clearly, not all demands can always be fulfilled, but the firm is obligated to achieve a target

individual service level βj ∈ (0,1) for each customer j ∈ N . This service level constraint can be

formally formulated as

Eϕ̃,D̃[Rj(sj(ϕ̃,c, D̃), D̃j)]≥ βj (5)

where Rj :R2
+ →R+ is called the service measure function of customer j. Constraint (5) unifies

different types of service level constraints in the operations management literature. For example,

when Rj(sj,Dj) = 1sj≥Dj
, constraint (5) defines the so-called Type I service level constraint, i.e.,

the demand of customer j must be completely satisfied with probability at least βj. Similarly,
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Type II service level can be defined by letting Rj(sj,Dj) = sj/ E[D̃j], which measures the fraction

of the expected demand that can be satisfied. In contrast, choosing Rj(sj,Dj) = sj/Dj allows us

to measure the fraction of the actual demand that can be fulfilled, which we name as Type III

service level constraint. It is straightforward to verify that these functions all satisfy the following

conditions.

Assumption 1.

a. For any j ∈ N , Rj(sj,Dj) is non-decreasing and upper semi-continuous in sj, for any fixed

Dj.

b. For any c and D, P (c,D) is a compact set.

The firm’s problem is to decide capacity level c and rationing policy ϕ̃ to minimize the first

stage capacity investment cost p(c) and the expected second stage allocation cost subject to the

individual service constraints, which can be formulated as

inf
c≥0,ϕ̃

p(c)+ Eϕ̃,D̃[f(y(ϕ̃,c, D̃))] (6)

s.t. Eϕ̃,D̃[Rj(sj(ϕ̃,c, D̃), D̃j)]≥ βj ∀j ∈N (6a)

(sj(ϕ̃,c,D),y(ϕ̃,c,D))∈ P (c,D) ∀D.

The formulation should also specify the set of feasible (randomized) policies, which will be discussed

in Section 2.

Although (6) is formulated as a single-period model, it is possible to approximate it by a periodic-

review infinite time horizon problem as follows. Assume that the capacity is perishable, i.e., unused

capacity in the previous period can not be used to satisfy future demands, and unmet demands are

lost. Denote the demand in period t by D̃(t) and assume D̃(1), D̃(2), · · · , D̃(t), · · · , are i.i.d random

variables. The fulfilled demand of customer j and the allocation in period t is denoted by

s
(t)
j (c,D(1:t), s(1:t−1),y(1:t−1)) and y(t)(c,D(1:t), s(1:t−1),y(1:t−1))

where D(1:t) = (D(1), · · · ,D(t)), s(1:t−1) = (s(1), · · · , s(t−1)) and y(1:t−1) = (y(1), · · · ,y(t−1)), which

shows explicitly that the demand fulfillment and resource allocation decisions in period t can depend

on realized demands up to time t and on previous fulfillment and resource allocation decisions up

to time t− 1. With these notations, formulation (6) can be approximated by

inf
c≥0,s≥0,y≥0

p(c)+ limsup
T→∞

1

T

T∑
t=1

f(y(t)(c,D(1:t), s(1:t−1),y(1:t−1))) (7)

s.t. lim inf
T→∞

1

T

T∑
t=1

Rj(s
(t)
j (c,D(1:t), s(1:t−1),y(1:t−1)),D

(t)
j )≥ βj, ∀j ∈N (7a)

Note that the service level constraint (7a) is defined in an asymptotic sense, which implies the

following definition of asymptotic feasibility for the single-period model.
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Definition 1. A capacity level c is asymptotically feasible as long as for any ϵ > 0, there exists a

rationing policy ϕ̃ϵ such that

Eϕ̃ϵ,D̃
[Rj(sj(ϕ̃ϵ,c, D̃), D̃j)]≥ βj − ϵ, ∀j ∈N (8)

Obviously, asymptotic feasibility does not immediately imply feasibility, i.e., constraint (6a). How-

ever, we shall prove that under an additional yet mild assumption stated in the next section,

asymptotic feasibility is equivalent to feasibility, i.e., constraint (8) is equivalent to constraint (6a).

To the best of our knowledge, this is the first time that such an equivalence for the service level

constraint is formally proved in the literature.

1.2. Previously Known Results and Closely Related Literature

There are different models concerning service level constraints in the literature, which can be

captured as special cases of our general framework. To the best of our knowledge, existing literature

on individual service level constraints considers only first stage capacity investment cost, but not

the second stage resource allocation cost.

Baker (1985) was among the first to discuss the impact of individual Type I service constraints on

safety stock level in the context of an assemble to order system. A more formal analysis appeared in

Baker et al. (1986) that considers a W-system with two products and three components. Therefore,

capacity rationing only matters for the common component. However, optimal rationing policy is

not discussed in the paper. In their analysis of safety stock level, it is assumed that the priority is

always given to the product with lower realized demand. An optimal allocation policy is derived

for the same problem, i.e., the W-system with two products and three components, in Gerchak

et al. (1988) when the target service levels of the two products are equal, and in Mirchandani and

Mishra (2002) when the target service levels of the two products can be different.

Individual Type I service constraints have also been addressed in inventory pooling. A chance-

constrained stochastic program was formulated in Swaminathan and Srinivasan (1999). However,

the number of decision variables grows exponentially in the number of customers. Computational

results are reported only when the number of customers is small, i.e., two or three. A closed-form

expression for the optimal inventory level is derived when the number of customers is two and

demands are i.i.d uniform distributions. Alptekinoğlu et al. (2013) prove that priority policies are

optimal under which customers are served according to a priority list. An optimal policy is derived

when demands are i.i.d. They also compare the performance of anticipative vs responsive priority

policies. We will define and discuss these two types of priority policies in detail in Section 3.

Much progress has recently been made when individual service constraints are of Type II. Hou

et al. (2009) study the single-resource allocation problem in the context of wireless networks prob-

lem with quality of service (QoS) constraints, which is the same as the infinite horizon multi-period
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formulation of the Type II service constraints. They propose the so-called largest-debt-first policy

and prove its optimality for the single-resource allocation problem. Their analysis is based on a

novel application of the celebrated Blackwell’s approachability theorem (Blackwell, 1956). Zhong

et al. (2017) apply a similar approach and analyze the safety stock level in inventory pooling with

individual Type II service constraints. They show that a randomized anticipative priority policy

is optimal in this setting. The approach and results are extended, in a highly non-trivial way, by

Lyu et al. (2019) to study capacity rationing policy in process flexibility.

There is a stream of literature in inventory management that studies the problem of fulfilling the

demand of multiple customers with individual Type I service guarantees; see for example Agrawal

and Cohen (2001) and Zhang (1997). However, most of these papers focus on inventory optimization

under given inventory rationing policies and these policies are not necessarily optimal. For example,

Agrawal and Cohen (2001) propose a heuristic policy, called the fair-share allocation policy, while

Zhang (1997) assumes that customer demands are fulfilled according to a pre-specified priority list.

If we require in our model that the entire demand of all customers must be met with a given

probability, capacity rationing is no longer needed and our problem can then be formulated as a

two-stage joint chance-constrained stochastic program, which has been studied in Gurvich et al.

(2010) and Liu et al. (2016).

1.3. Our Results

We propose in this paper a simple rationing policy, called the Max-Weighted-Service policy, for

formulation (6). Our policy assigns a random weight to each customer and based on the weights we

solve, after demand realization, a deterministic capacity allocation and demand fulfillment problem

to maximize a weighted service measure function. The random weight is sampled from a sufficiently

large set that can be constructed offline.

Our main result is to show the Max-Weighted-Service policy is asymptotically optimal for a

very general class of capacity allocation and demand fulfillment problems with individual service

constraints. The generality of our model formulation is similar to the so-called newsvendor networks

models proposed by Mieghem and Rudi (2002) (see also Bassamboo et al. (2010)). Indeed, our

model is applicable in inventory pooling, process flexibility, assemble to order, transshipment,

substitution, etc, as long as the fulfilled demand can be modeled as a linear transformation of

capacity, i.e., the feasible set P (c,D) is a bounded polyhedron.

Unlike the models of Mieghem and Rudi (2002) that penalize unsatisfied demand in the cost

function, our model explicitly imposes individual service constraint for each customer. And the

0 After presenting this work at NYU Shanghai on April 19th, 2019, it was brought to our attention by Professor
Renyu Zhang that Blackwell’s approachability theorem has also been applied to study single-resource pooling with
Type I service constraints by Lyu et al. (2017).
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service constraints can be defined in a variety of ways. Indeed, our Max-Weighted-Service policy

is asymptotically optimal under very mild conditions on the service measure functions, which are

satisfied by both Type I and Type II service levels. As discussed in the previous subsection, Type

I and Type II service levels have usually been analyzed separately in the literature. Our approach

allows a unified treatment for both service levels, and beyond. Besides these two metrics that

are commonly used in practice and studied in the literature, we also allow the service level of a

customer to depend on, for example, the probability that its demand is fully satisfied as well as

the probability that a certain fraction of its demand is satisfied.

Despite the generality of the model, our approach to derive the policy is simple. We formulate

the problem of finding an optimal randomized policy, for a fixed capacity level, as a semi-infinite

linear program. The decision variable can be interpreted as the probability measure over the set

of all possible deterministic policies, not just all possible priority lists. (Priority policies are not

always optimal for our general model.) Although this formulation is natural, it appears to be

new in the literature that addresses individual service constraints. Randomized policies have been

studied for various special cases of our model, see for example Swaminathan and Srinivasan (1999),

Alptekinoğlu et al. (2013), Zhong et al. (2017), Lyu et al. (2019), but their formulations are different

than ours. For example, for inventory pooling with Type I service constraints, Swaminathan and

Srinivasan (1999) partition the support of demand into different regions, and the decision variable

is, for each demand region, the probability of choosing a particular priority list. Alptekinoğlu et al.

(2013)) takes a similar approach. We discuss the difference between our approach and those of

Zhong et al. (2017) and Lyu et al. (2019) below.

As a corollary of our main result, we show that randomized anticipative (responsive, respectively)

index policies are asymptotically optimal when all individual service constraints are of Type II

(Type III, respectively) and when the feasible set P (c,D) can be characterized by a polymatroid.

Even with this additional assumption on P (c,D), our model still captures a wide range of problems

as special cases such as inventory pooling, process flexibility, commonality in the generalized W-

system in assemble-to-order, capacity planning of more general network, etc. For the special cases

of single-resource pooling and process flexibility without second-stage allocation costs, our policy

recovers those in Hou et al. (2009), Zhong et al. (2017), and Lyu et al. (2019). However, our

policy is derived using a different approach. For example, Lyu et al. (2019) uses the infinite-

time horizon model to study the single-period model. They derive an allocation policy for the

infinite-time horizon model. They then use their policy to derive a sufficient condition for a given

capacity being feasible for the infinite-time horizon model, which corresponds to the notion of

asymptotically feasible defined in our paper for the single-period model. Their analysis appears

to be specific to the process flexibility problem and is much more involved than the analysis of
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the single-resource allocation problem in Zhong et al. (2017). In contrast, our semi-infinite linear

programming formulation and its dual allow us to derive the necessary and sufficient condition

of a given capacity level for the single-period problem directly. Our allocation policy is motivated

by applying the stochastic gradient descent (SGD) algorithm to the dual problem. Moreover, the

SGD-based approach proves the asymptotic optimality of the policy for a much more general model

that even includes second-stage allocation costs, while Blackwell’s approachability theorem focuses

on finding a feasible path to approach the target set without concerning optimality of this path

with regard to the allocation cost. Also, the connection between the dual variable and the optimal

allocation policy appears to be new.

Based on our duality result, we develop a minimax stochastic programming formulation and

apply an existing first-order algorithm to compute an optimal or near-optimal capacity level.

Numerical results show that the algorithm converges to a globally optimal solution whenever the

objective function is convex, as predicted by existing theory. When the objective function is non-

convex, we propose heuristics to compute near-optimal solutions.

Our framework is general and can be applied to different problems and different service level

constraints. Though we have different assumptions in the following sections, they are all mild. To

put it succinctly, the sufficient and necessary condition for a given capacity to be asymptotically

feasible (Theorem 1) or feasible (Theorem 2), the asymptotic optimality of the Max-Weighted-

Service policy (Theorem 3) and the minimax formulation for solving the optimal capacity (Theorem

5) apply to settings including inventory pooling, flexible production and the assemble-to-order

problems for service levels including Type I, Type II and Type III. The optimality of an index

policy (in Theorem 4) requires a stronger assumption and applies to inventory pooling, flexible

production problems and the generalized W-system ATO problems under Type II or Type III

service levels, and does not apply to general ATO problems or Type I service level.

2. Randomized Rationing Policy and Problem Reformulation

We begin this section by formally formulating the set of feasible rationing policies in formulation

(6). A deterministic policy is a function ϕ from Rm+n
+ to Rn

+ ×Rnm
+ such that for any capacity

level c and any realized demand D,

ϕ(c,D) = (s(ϕ,c,D),y(ϕ,c,D))∈ P (c,D).

We also denote by s(ϕ,c,D) the demand fulfillment and y(ϕ,c,D) the allocation under the

deterministic policy ϕ for fixed c and D. We denote the set of all deterministic policies by Φ.

A randomized policy is determined by a probability measure λ over Φ such that any (measurable)

subset of deterministic policies Φ̂⊆Φ is chosen with probability λ(Φ̂). Such a randomized policy is
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denoted by ϕ̃λ or simply λ. Therefore, optimization over randomized policies can be reformulated

as an optimization over probability measures.

Under a deterministic policy ϕ ∈ Φ, the service level of customer j is given by

ED̃[Rj(sj(ϕ,c, D̃), D̃j)]. Therefore, under a randomized policy ϕ̃λ, the service level of customer j

is

Eϕ̃λ,D̃[Rj(sj(ϕ̃λ,c, D̃),Dj)] =

∫
ϕ∈Φ

ED̃[Rj(sj(ϕ,c, D̃), D̃j)]dλ(ϕ). (9)

It follows that problem (6) can be reformulated as

inf
c≥0,λ∈χ

p(c)+

∫
ϕ∈Φ

ED̃[f(y(ϕ,c, D̃))]dλ(ϕ) (10)

s.t.

∫
ϕ∈Φ

ED̃[Rj(sj(ϕ,c, D̃), D̃j)]dλ(ϕ)≥ βj ∀j ∈N (10a)

where χ = {λ ≥ 0 :
∫
ϕ∈Φ

dλ(ϕ) = 1}. Notice that constraint (10a) appears to be bilinear in

(ED̃[Rj(sj(ϕ,c, D̃), D̃j)], dλ), which is non-convex.

In the remainder of this section, we assume that capacity c is fixed and establish conditions for

checking feasibility of a given capacity level. We also present in Section 3 an optimal rationing

policy when the given capacity level is feasible. These results will be used in Section 4 for the

computation of optimal or near-optimal capacity levels. The results can be obtained by considering

the following semi-infinite linear program

inf
λ∈χ

∫
ϕ∈Φ

ED̃[f(y(ϕ,c, D̃))]dλ(ϕ) (11)

s.t.

∫
ϕ∈Φ

ED̃[Rj(sj(ϕ,c, D̃), D̃j)]dλ(ϕ)≥ βj, ∀j ∈N (11a)

and its Lagrangian dual formulation. Introducing the Lagrangian dual multipliers wj for constraints

(11a) for each j ∈N , we obtain the Lagrangian dual formulation of (11)

sup
w≥0

inf
λ∈χ

L(w, λ) (12)

where

L(w, λ) :=
∑
j∈N

wj ·βj +

∫
ϕ∈Φ

F (w,ϕ)dλ(ϕ) (13)

denotes the Lagrangian dual function and

F (w,ϕ) :=ED̃[f(y(ϕ,c, D̃))]−
∑
j∈N

wj ·ED̃[Rj(sj(ϕ,c, D̃), D̃j)]. (14)

It is clear that for fixed w, infλ∈χ L(w, λ) =
∑

j∈N wj · βj + infϕ∈Φ F (w,ϕ) and thus the dual

problem can be reformulated as

sup
w≥0

inf
λ∈χ

L(w, λ) = sup
w≥0

∑
j∈N

wj ·βj + inf
ϕ∈Φ

F (w,ϕ) (15)
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Indeed, the above dual formulation can be further simplified. To that end, We first define a deter-

ministic optimization problem which we call the Max-Weighted-Service problem. Specifically, for

any given w≥ 0,c, and D, define

g(w,c;D) = min
(y,s)∈P (c,D)

f(y)−
∑
j∈N

wjRj(sj,Dj) (16)

Under Assumption 1, problem (16) always attains its minimum in the compact set P (c,D). For

any w≥ 0, we define a deterministic policy ϕw such that ϕw(c,D) = (s∗w(c,D),y∗
w(c,D)) for any

c and D, where (s∗w(c,D),y∗
w(c,D)) denotes an optimal solution of (16). (When (16) has multiple

optimal solutions, ties are broken arbitrarily so that (s∗w(c,D),y∗
w(c,D)) is uniquely defined.)

We show in the next lemma that it suffices to focus on the Max-Weighted-Service problem to

solve the dual problem (15), where the proof is relegated to Appendix A.

Lemma 1. For any fixed w≥ 0, it holds that

inf
ϕ∈Φ

F (w,ϕ) = F (w,ϕw) =ED̃[g(w,c; D̃)]. (17)

In fact, when considering the feasibility of a given capacity level, we can further simplify (12) by

assuming zero allocation cost. We are now ready to present our first result regarding the asymptotic

feasibility of a given capacity level c.

Theorem 1. Under Assumption 1, a given capacity level c is asymptotically feasible if and only if

ED̃[ max
(y,s)∈P (c,D)

∑
j∈N

wjRj(sj,Dj)]≥
∑
j∈N

wjβj for all w≥ 0 (18)

Proof: When a capacity level c is asymptotically feasible, from (8), it is clear that we have

inf
λ∈χ

∑
j∈N

wj ·
(
βj −

∫
ϕ∈Φ

ED̃[Rj(sj(ϕ,c, D̃), D̃j)]dλ(ϕ)

)
≤ 0

for each fixed w≥ 0. Thus, it holds that

sup
w≥0

inf
λ∈χ

∑
j∈N

wj ·
(
βj −

∫
ϕ∈Φ

ED̃[Rj(sj(ϕ,c, D̃), D̃j)]dλ(ϕ)

)
≤ 0 (19)

From Lemma 1 (assuming zero allocation cost), we immediately tell that (18) holds.

We now prove the reverse direction. If (18) holds, then (19) holds from Lemma 1. We define the

set W = {w≥ 0 :
∑

j∈N wj ≤ 1}. Clearly, we have that

max
w∈W

inf
λ∈χ

∑
j∈N

wj ·
(
βj −

∫
ϕ∈Φ

ED̃[Rj(sj(ϕ,c, D̃), D̃j)]dλ(ϕ)

)
≤ 0 (20)

Obviously, the set χ is a convex set. Moreover, note that W is a convex compact set and the

objective function in the above problem is linear in w (resp. λ) when λ is fixed. Then by Sion’s
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minimax theorem (Sion, 1958), we can interchange the order of max and inf on the left-hand side

of (20). Thus, we have

inf
λ∈χ

max
w∈W

∑
j∈N

wj ·
(
βj −

∫
ϕ∈Φ

ED̃[Rj(sj(ϕ,c, D̃), D̃j)]dλ(ϕ)

)
≤ 0

For any ϵ > 0, there exists a randomized policy λϵ ∈ χ such that

sup
w∈W

∑
j∈N

wj ·
(
βj −

∫
ϕ∈Φ

ED̃[Rj(sj(ϕ,c, D̃), D̃j)]dλϵ(ϕ)

)
≤ ϵ (21)

We now claim that λϵ achieves a service level at least βj − ϵ for each j ∈N , i.e.∫
ϕ∈Φ

ED̃[Rj(sj(ϕ,c, D̃), D̃j)]dλϵ(ϕ)≥ βj − ϵ. (22)

Otherwise, suppose there exists a j′ ∈N such that (22) does not hold. Then we define ŵ ∈W such

that ŵj′ = 1 and ŵj = 0 for all j ̸= j′. It is clear that

ϵ < ŵj′ ·
(
βj′ −

∫
ϕ∈Φ

ED̃[Rj′(sj′(ϕ,c, D̃), D̃j′)]dλϵ(ϕ)

)
≤ sup

w∈Wϵ

∑
j∈N

wj ·
(
βj −

∫
ϕ∈Φ

ED̃[Rj(sj(ϕ,c, D̃), D̃j)]dλϵ(ϕ)

)
≤ ϵ

where the last inequality follows from (21). This is a contradiction. Thus, we prove that c is

asymptotically feasible, which completes our proof. □

Recall that asymptotic feasibility is weaker than feasibility. In what follows, we present sufficient

conditions for feasibility. To that end, we prove strong duality between the primal-dual pair (11)

and (12) under the following assumption.

Assumption 2.

a. For any j ∈N , the service measure function Rj satisfies:

• Rj(sj,Dj) is non-decreasing in sj, for any fixed Dj;

• there exists a finite set of parameters 0 = aj,1 <aj,2 < · · ·<aj,Kj
= 1 such that for any fixed

Dj, Rj(sj,Dj) is linear in sj when sj ∈ [aj,lDj, aj,l+1Dj) for any l ∈ {1,2, . . . ,Kj − 1};
• there exists a constant C1 > 0 such that Rj(sj,Dj)≤C1 ·max{1,Dj} for any D and any

sj ≤Dj.

b. P (c,D) is a bounded polyhedron of (s,y) defined by a set of linear inequalities on (s,y,c,D),

including the constraints s ≤D and (s,y) ≥ 0, and there exists a constant C2 > 0 such that

∥(s,y)∥22 ≤C2 · ∥D∥22 for any D and any (s,y)∈ P (c,D).

Assumption 2a requires Rj(sj,Dj) to be piece-wise linear in sj for any fixed Dj. The breakpoints

are defined based on the ratio sj/Dj, which denotes the fraction of the fulfilled demand of customer

j. It is satisfied by Type I, Type II, Type III service measure functions. Moreover, models such as

inventory pooling, process flexibility and assemble-to-order all satisfy Assumption 2b.



12 Jiang, Wang and Zhang: Optimal Capacity Rationing of Shared Resources

Theorem 2. Under Assumption 2, strong duality holds between (11) and (12) for any given capac-

ity level c≥ 0. Specifically, (11) is feasible if and only if the objective value of (12) is finite, and

when (11) is feasible, the objective values of (11) and (12) are the same.

The proof is relegated to Appendix B. We note that strong duality for semi-infinite linear pro-

gramming under various conditions has been studied in the literature; see for example Shapiro

(2001) and Martin et al. (2016). However, we have not found a simple way to verify these con-

ditions. For example, in order to apply the strong duality results of Shapiro (2001), we have to

show certain closedness or compactness properties of a topological space on the set of deterministic

policies Φ. Our proof essentially shows certain compactness of a related set. However, we choose

to apply Sion’s minimax theorem (Sion, 1958) to avoid introducing additional concepts required

by existing conditions on the semi-infinite linear programming duality and our proof appears to be

slightly simpler.

By Theorem 2, problem (11) is feasible if and only if the objective value of (12) is finite. In

fact, we can simplify the condition by assuming zero allocation cost in (11). The following is an

immediate corollary of Theorem 2 and Lemma 1.

Corollary 1. Under Assumption 2, a given capacity level c is feasible if and only if

ED̃[ max
(y,s)∈P (c,D)

∑
j∈N

wjRj(sj,Dj)]≥
∑
j∈N

wjβj for all w≥ 0 (23)

Corollary 1 can be used to develop numerical procedures to check whether or not a given capacity

level is feasible. In fact, for fixed c, condition (23) is equivalent to

max
w≥0

∑
j∈N

wjβj −ED̃[ max
(y,s)∈P (c,D)

∑
j∈N

wjRj(sj,Dj)]≤ 0 (24)

It is clear that max(y,s)∈P (c,D)

∑
j∈N wjRj(sj,Dj) is convex in w for any fixed c and D. Thus, check-

ing the feasibility of a fixed c amounts to solving a concave maximization problem. In Appendix D,

we further illustrate how Corollary 1 can be used to find minimum capacity for problems studied

in Mirchandani and Mishra (2002) and Swaminathan and Srinivasan (1999).

Although Corollary 1 enables us to check whether or not a given capacity level is feasible, it does

not explicitly guide how the service guarantees can be achieved. Indeed, the result was derived

from an existence proof by the strong duality between (11) and (12), and it does not immediately

suggest an allocation policy. However, as we shall discuss in the next section, the dual formulation

(12) is instrumental for us to derive a capacity rationing policy for a feasible capacity level.
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3. Max-Weighted-Service Policy

In this section, we solve problem (11) for a fixed and feasible c. To gain insights, recall the primal

problem (11) and its dual (12). Strong duality proved in Theorem 2 under Assumption 2 implies the

so-called complementary conditions (Shapiro, 2001), which states that for any optimal primal-dual

solution pair (dλ∗,w∗), dλ∗(ϕ)> 0 only if ϕ ∈ argminϕ∈ΦF (w
∗,ϕ). If we knew w∗ in advance and

if we could enumerate all policies in argminϕ∈ΦF (w
∗,ϕ), then (11) becomes a finite-dimensional

LP and we can then obtain the optimal randomized policy. However, it is not always possible

to enumerate all polices in argminϕ∈ΦF (w
∗,ϕ). Instead, our approach does not require precise

knowledge of w∗, nor the strong duality.

Our approach is to generate a random vector w̃ and for fixed w= w̃ we solve problem (16) to

obtain a deterministic policy ϕw. This procedure gives us a randomized policy. The approach is

motivated by applying the stochastic gradient descent algorithm (SGD) to solve the dual problem

(12), which is reformulated as follows

max
w≥0

G(w) :=

{∑
j∈N

wj ·βj +min
ϕ∈Φ

[
ED̃[f(y(ϕ,c, D̃))]−

∑
j∈N

wj · ED̃[Rj(sj(ϕ,c, D̃), D̃j)]

]}
(25)

Specifically, SGD starts from any w(1) ≥ 0 and for each t= 1,2, . . . , T , updates

w
(t+1)
j =

[
w

(t)
j + γT · ∂Ĝ(w

(t);D(t))

∂wj

]+
∀j ∈N

with a step size γT , where ∂Ĝ(w(t);D(t))

∂wj
= βj − Rj

(
sj
(
ϕw(t) ,c,D(t)

)
,D

(t)
j

)
and D(t) is an inde-

pendent sample. Then, the expectation of
∑T

t=1 w(t)

T
will converge to w∗ with an appropriate step

size, e.g. γT = 1√
T

(Hazan, 2019). Indeed, we can set w̃ to be the uniform distribution over

{w(1),w(2), . . . ,w(T )} to derive our policy.

We present our policy in Algorithm 1. According to step 3 of Algorithm 1, our randomized

capacity rationing policy selects a deterministic policy ϕw(t) , t = 1,2,3, · · · , T , with probability

1/T . We refer to this policy as the Max-Weighted-Service policy. By Lemma 1, under Assumption

1, for any w, implementing the policy ϕw in Algorithm 1 only requires solving (16) for the given

demand realization D. In the following, for each t= 1, . . . , T , we further denote an i.i.d. copy of D̃

as D̃t, which is also independent of the samples {D(1), . . . ,D(T )}.

Note that the Max-Weighted-Service policy requires to obtain T samples of the demand distri-

bution. For any policy ϕ̃, we denote by ϕ̃(T ) if ϕ̃ requires T samples of the demand distribution.

Then, we call ϕ̃ asymptotically optimal if and only if

limsup
T→∞

ED̃[f(y(ϕ̃(T ),c, D̃))]≤Obj (11) and lim inf
T→∞

ED̃

[
Rj(sj(ϕ̃(T ),c, D̃), D̃j)

]
≥ βj, ∀j ∈N .
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Algorithm 1 Max-Weighted-Service Policy

1: Generate demand samples {D(1),D(2), . . . ,D(T )} independently from demand distribution F ,

where T is sufficiently large.

2: Starting from w(1) = 0, iteratively generate a random sequence {w(2),w(3), . . . ,w(T+1)} as fol-

lows:

w
(t+1)
j =

[
w

(t)
j + γT ·

(
βj −Rj

(
sj
(
ϕw(t) ,c,D(t)

)
,D

(t)
j

))]+
(26)

3: Draw a vector w̃T from {w(1),w(1), . . . ,w(T )} uniformly at random. Given w= w̃T , adopt the

deterministic policy ϕw.

where Obj(11) denotes the optimal value of (11). In order to prove the asymptotic optimality of

the Max-Weighted-Service policy, it is sufficient to prove that the following two inequalities hold

amost surely:

limsup
T→∞

1

T
·

T∑
t=1

ED̃t [f(y(ϕw(t) ,c, D̃t))]≤Obj (11) (27)

and

lim inf
T→∞

1

T
·

T∑
t=1

ED̃t

[
Rj(sj(ϕw(t) ,c, D̃t), D̃t

j)
]
≥ βj, ∀j ∈N . (28)

We are now ready to prove the asymptotic optimality of the Max-Weighted-Service policy under

the following additional mild assumption.

Assumption 3. The support of demand D̃ is bounded, and there exists a constant C such that for

each j ∈N , Rj(sj,Dj)≤C for each Dj and each sj ≤Dj.

It is clear that Type I, Type II and Type III service measure functions all satisfy Assumption 3

when the support of demand D̃ is bounded.

Theorem 3. Under Assumption 1 and Assumption 3, if the capacity level c is feasible and the

step size γT = T−( 12+ϵ) for some ϵ ∈ (0,1/2), then the Max-Weighted-Service policy is asymptotic

optimal, i.e., (27) and (28) hold almost surely.

The proof is relegated to Appendix E. Theorem 3 shows the almost surely convergence. If we

consider a weaker version of convergence, namely, convergence in expectation, a simple modification

of the proof of Theorem 3 also shows the convergence rates in the objective value and the service

level constraints. And the results hold under a weaker assumption than Assumption 3.
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Corollary 2. Suppose Assumption 1 holds and assume that there exists a constant C such that

ED̃[Rj(sj, D̃j)
2]≤C for all sj ≥ 0. Then

1

T
·

T∑
t=1

Ew(t),D̃t [f(y(ϕw(t) ,c, D̃t))]−Obj (11)≤O(γT )

and for each j ∈N

βj −
1

T
·

T∑
t=1

Ew(t),D̃t

[
Rj(sj(ϕw(t) ,c, D̃t), D̃t

j)
]
≤O(max{

√
1

T
,

√
1

TγT
})

By Corollary 2, we can use different step sizes to prove different convergence rates for the expected

allocation cost and the expected service level. For example, by setting γT = 1√
T
, we get O( 1√

T
)

convergence rate for the expected allocation cost and O( 1

T1/4 ) convergence rate for expected service

levels. By setting γT = 1

T1/3 , we get O( 1

T1/3 ) convergence rate for both the expected allocation cost

and expected service levels. If there is no second stage allocation cost, then we can choose an

arbitrary γT > 0 and get a convergence rate of O( 1√
T
) on the expected service levels.

3.1. Polymatroid and Index Policies

The Max-Weighted-Service policy presented in the previous section is asymptotically optimal for

our general model as long as (the very mild) Assumption 1 and Assumption 3 hold. By imposing

additional assumptions on the problem structure and the service measure functions, it is possible to

obtain additional insights about the policy. The assumption is imposed on a polymatroid structure

of the feasible set. The definition of polymatroid is based on submodular set functions (Welsh,

2010). A function q : 2N →R+ is called a submodular set function if for any U,V ⊆N , we have

q(U)+ q(V )≥ q(U ∩V )+ q(U ∪V ).

Moreover, q is non-decreasing if q(U)≤ q(V ) for any U ⊆ V ⊆N . Then a set Q is called a polyma-

troid if there exists a non-decreasing submodular set function q with q(∅) = 0 such that

Q=

{
s∈RN

+ |
∑
j∈U

sj ≤ q(U), ∀U ⊆N

}
. (29)

The main assumption of this section is the following.

Assumption 4. For any given capacity level c and any realized demand D, the feasible set

Q(c,D) = {s : ∃y, (y, s)∈ P (c,D)} is a polymatroid.

A wide range of capacity allocation problems enjoys the polymatorid structure, which includes

single-resource pooling, process flexibility, and the generalized W-system ATO problem, as

described previously. We relegate the detailed discussions to Appendix F.
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In the following, by a straightforward application of a well-known result in polymatroid opti-

mization, we show that an index policy is asymptotically optimal whenever both the allocation

cost and the service measure function Rj(sj,Dj) are linear in sj for fixed Dj, for all j ∈ N . An

index policy fulfills the demand of customers according to an index list: the demand of customers

with a higher index will be fulfilled as much as possible before fulfilling those with a lower index.

Specifically, for each fixed D, the index policy will first lexicographically maximizes sj according

to the priority order while satisfying s ∈Q(c,D). Once the fulfillment s is determined, the allo-

cation y is determined by solving the Max-Weighted-Service problem (16) with s being fixed. In

the single-resource pooling setting, this implies that only one customer is partially satisfied and

the ones with higher indices than that customer will be completely satisfied (Alptekinoğlu et al.,

2013). However, when multiple resources are involved such that different customers are served by

different resources, it is possible that even the customer with the highest index may not be com-

pletely fulfilled while a customer with a lower index is fulfilled, since the corresponding resources

for the highest index customer may not be enough to fully cover the demand of that customer.

There are two types of index policies, namely responsive and anticipative index policies. An index

policy is responsive if the index list is constructed after demand realization and thus can potentially

depend on realized demand, while an index policy is anticipative if the index list is constructed

before demand realization. Both responsive index policies and anticipative index policies can be

deterministic or randomized.

Theorem 4. Suppose that the function of the allocation cost can be represented as
∑

j∈N vj · sj
where s denotes the fulfillment and for every j ∈N , the service measure functions are linear in sj,

i.e., Rj(sj,Dj) = aj(Dj) · sj + bj(Dj), and that Assumption 4 holds. Let w be the random weight

vector generated by Algorithm 1. Denote by {i1, i1, . . . , in} a permutation of {1,2, . . . , n} such that

wij · aij (Dij )− vij ≥wij+1
· aij+1

(Dij+1
)− vij+1

for all j = 1, . . . , n− 1. It is asymptotically optimal

to fulfill the demand of the customers in the following way:

s∗i1 = q({i1}|c,D)

s∗ij = q({i1, i2, · · · , ij}|c,D)− q({i1, i2, · · · , ij−1}|c,D), j = 2, · · · , n

The proof is relegated to Appendix F. To conclude this section, we make a couple of remarks.

Remark 1: If Rj(sj,Dj) = sj/Dj for all j ∈N , which corresponds to Type III service constraint,

then aj(Dj) = 1/Dj. Therefore, in this case, the customers are fulfilled according to a non-increasing

order of wj/Dj − vj, which depends on the realized demand D. Accordingly, the randomized Max-

Weighted-Service policy is a randomized responsive index policy.

Remark 2: If Rj(sj,Dj) = sj/µj for all j ∈ N , representing Type II service constraint, then
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aj(Dj) = 1/µj. In this case, the customers are fulfilled according to a non-increasing order of

wj/µj − vj, which does not depend on demand realization. Therefore, the randomized Max-

Weighted-Service policy is a randomized anticipative index policy. This result unifies and gener-

alizes previous results on capacity allocation with Type II service constraints, including those of

Hou et al. (2009) and Zhong et al. (2017) for single-resource pooling, and Lyu et al. (2019) for pro-

cess flexibility. Specifically, when there is no allocation cost, our policy recovers the policies in the

aforementioned papers with the same convergence rate. Moreover, we can show that a randomized

anticipative index policy is not just asymptotically optimal, but actually optimal. The detailed

discussion is relegated to Appendix F.

4. Computing Optimal Capacity Level

Section 3 is focused on characterizing rationing policies for a given capacity level. In this section,

we present algorithms to compute optimal capacity levels under Assumption 2. The development

of the algorithm relies on the strong duality result in Theorem 2 for fixed c, which then gives rise

to a min-max stochastic programming formulation for the original capacity optimization problem

(10). To present the formulation, we define for any w and c,

H(w,c) = ED̃[h(w,c; D̃)] (30)

where for each D,

h(w,c;D) = p(c)+
∑
j

wjβj + g(w,c;D).

Recall that g(w,c;D) is defined in (16). From the strong duality established in Theorem 2, we

have the following result.

Theorem 5. Under Assumption 2, problem (10) is equivalent to

min
c≥0

max
w≥0

H(w,c) (31)

in the sense both problems share the same optimal capacity level.

The proof is relegated to Appendix G. Problem (31) is a minimax stochastic program, for which var-

ious optimization algorithms have been developed; see for example Nemirovski et al. (2009). How-

ever, in order to guarantee convergence to a globally optimal solution, usually convexity/concavity

of the objective function is required.

It is clear that for fixed c and D, g(w,c;D) is concave in w. It then follows immediately that

H(w,c) is concave in w for any fixed c. However, convexity of H(w,c) in c can only be guaranteed

with additional assumptions. Lemma 2 below presents one such assumption. The proof can be

found in Appendix H.
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Lemma 2. Under Assumption 2, if the following assumptions hold:

(i). The investment cost function p(c) is convex in c,

(ii). For all j ∈N , the service measure function Rj(sj,Dj) is concave in sj for any fixed Dj,

then H(w,c) is convex in c for any fixed w≥ 0.

Obviously, the assumptions of Lemma 2 are satisfied for both Type II and Type III service

constraints. Assuming that the optimal capacity level is bounded and C is a compact convex set

containing the optimal capacity level as an interior point, we must have

min
c≥0

max
w≥0

H(w,c) =min
c∈C

max
w≥0

H(w,c) =max
w≥0

min
c∈C

H(w,c)

When H(w,c) is convex in c and concave in w, the maximin problem in the above strong duality

relation is the dual problem of our original problem (10) in which c is a decision variable.

To proceed, we further make the following mild assumption about the objective function.

Assumption 5. For any fixed ε > 0, there exists a compact convex set W in Rn such that

max
w≥0

min
c∈C

H(w,c)− ε≤max
w∈W

min
c∈C

H(w,c)≤max
w≥0

min
c∈C

H(w,c)+ ε

It can be easily verified that this assumption in fact holds under Assumption 2 as long as the

optimal capacity level is finite. Since our focus in this section is to apply an existing algorithm to

solve our problem, we skip the verification of this assumption.

We now apply the mirror descent stochastic approximation (SA) algorithm of Juditsky and

Nemirovski (2011) to solve the minimax stochastic program (31). The presentation of the algorithm

requires the following notations. Let ∥·∥ be a general norm defined in R2n, with ∥x∥∗ = sup∥v∥≤1 v
Tx

being its dual norm. Let l :X = C ×W →R be a distance-generating function. If l(·) is convex and

continuous on X, the set

X0 = {x∈X : ∃u∈R2n s.t. x∈ argminv∈X [u
Tv+ l(v)]}

is convex. Suppose l(·) is continuously differentiable and strongly convex on X0 with parameter 1

with respect to ∥ · ∥, i.e.,

(x′ −x)T (∇l(x′)−∇l(x))≥ ∥x′ −x∥2, ∀x′, x∈X0.

The prox-function is defined by

V (x, z) = l(z)− [l(x)+∇l(x)T (z−x)]

and the prox mapping is defined by Px :R2n →X0 such that

Px(u) = argminz∈X{uT (z−x)+V (x, z)}.
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There are many ways to choose distance generating functions: for example l(x) =
∑2n

k=1 xk log(xk)

or l(x) = 1
2
∥x∥22. In the following analysis, we adopt the Euclidean norm ∥ · ∥2. For notational

brevity, we define the tuple θ= [wT ,cT ]T and denote ∂h(θ;D) = ∂h(w,c;D), which is an unbiased

estimator of ∂H(w,c) represented by

∂h(w,c;D) =

[
∂ch(w,c;D)

−∂wh(w,c;D)

]
.

Then the mirror descent SA algorithm is presented in Algorithm 2.

Algorithm 2 SA Algorithm Juditsky and Nemirovski (2011)

Input: initial point θ(1), time horizon T , positive step size {γ(t)}Tt=1, and a sequence {D(t)}Tt=1,

which is a sequence of samples of D̃.

Output: sequence {θ(t)}Tt=1.

for t= 1, ..., T do

θ(t+1) =Pθ(t)(γ
(t) · ∂h(θ(t),D(t)))

end for

Proposition 1.7 of Juditsky and Nemirovski (2011) implies that Algorithm 2 converges to an

optimal capacity level when E[∥∂h(w,c; D̃)∥22] is bounded and the step size {γ(t)}Tt=1 satisfies

T∑
t=1

γ(t) →∞ and

∑T

t=1(γ
(t))2∑T

t=1 γ
(t)

→ 0 as T →∞.

A common choice of step size is the constant step size γ(t) = δ√
T
for t= 1,2, . . . , T , where δ > 0 is a

parameter. One could also choose the step size γ(t) = δ√
t
for t= 1,2, . . . , T , which does not require

a fixed total number of iterations in advance.

The SA algorithm can be directly applied to solve problem (31) whenever H(w,c) is convex in

c (it is always concave in w). We report its numerical performance in the next section when it is

applied to problems with Type II and Type III service constraints.

However, when the service constraints are of Type I, H(w,c) is not guaranteed to be convex

in c in general and ∂h(w,c;D) may not be well defined. In this case, we propose a heuristic to

solve problem (31) approximately. The details are provided below. Note that the (super)-gradient

of h(w,c;D) over w is given by

∂wh(w,c;D) = β− z∗ := (βj − z∗j , j ∈N) (32)

where z∗ denotes an optimal solution to the problem below, which is a reformulation of the Max-

Weighted-Service problem for Type I service constraints,

g(w,c,D) = miny,s,z f(y)−
∑
j∈N

wjzj s.t. (y, s)∈ P (c,D), sj ≥ zjDj, zj ∈ {0,1} ∀j ∈N . (33)
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To get an approximation of ∂ch(w,c;D), we relax the integer constraint in (33) and get an LP

relaxation. Let φ be the coefficient of c in the objective value of the dual of the LP relaxation, and

φ∗ be the value of φ in an optimal dual solution. Define

∂ch̃(w,c;D) =∇p(c)+φ∗

as an approximation of ∂ch(w,c;D). Thus,

∂h̃(w,c;D) =

[
∂ch̃(w,c;D)
−∂wh(w,c;D)

]
=

[
∇p(c)+φ∗

−β+ z∗

]
will be used to approximate ∂h(w,c;D) in Algorithm 2. We refer to this heuristic as the SA

heuristic. However, it is not guaranteed that such a heuristic can always obtain a feasible capacity

level. In practice, if the solution of this heuristic is infeasible, we can apply a problem-specific

procedure to increase the capacity level. The details and the numerical performance of this method

will be reported in the next section.

5. Numerical Results

We now present numerical results to demonstrate the performance of the SA algorithm and the

SA heuristic proposed in the previous section. In our numerical study, We choose the distance-

generating function l(x) = 1
2
∥x∥22. We set the transportation cost to 0 in the numerical experiments.

The SA algorithm is guaranteed to converge to optimal capacity level if the service constraints are

convex, e.g., they are of Type II or Type III. In Section 5.1, we numerically illustrate the rate of

convergence for the SA algorithm when the service levels are of Type II or Type III. From Section

5.2 to Section 5.4, we investigate the effectiveness of our algorithm under Type I service level in

different applications. For Type I service constraints, We focus on the accuracy of the SA Heuristic.

We study inventory pooling problems in Section 5.2, flexible production problems in Section 5.3

and the assemble-to-order problems in Section 5.4.

5.1. Convergence Rate of SA Algorithm under Type II and Type III Service Levels

In this section, we apply the SA algorithm to compute the optimal capacity level under Type II

and Type III service levels in different applications, including inventory pooling problems, flexible

production problems, and assemble-to-order problems. We aim to evaluate the rate of convergence

of the SA algorithm under different applications, system sizes, and service levels. For the inventory

pooling problem, we run the SA algorithm in the 1× 10, 1× 20, and 1× 50 systems, where the

demand follows a truncated normal distribution with a mean of 1 and a standard deviation of 0.3.

For the flexible production problem, we evaluate the SA algorithm in the 10× 10, 20× 20, and

50×50 long-chain system (illustrated in Figure 1), where the demand follows the same distribution
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as in the inventory pooling problem. In the Assemble-To-Order problem, we test the algorithm

under the 11× 10, 21× 20, and 51× 50 generalized W-systems (illustrated in Figure 1) with the

same demand distribution. The target service levels are the same among all products, and all the

applications are replicated for service levels being 0.85, 0.90 and 0.95. The structures of different

systems are presented in Figure 1.

Figure 1 Structure of Inventory Pooling, Long Chain, and the ATO System in Section 5.1

Resource Product

Long-Chain

Resource Product

Inventory Pooling 

Resource Product

Generalized W-system ATO

Table 1 The Convergence Time for SA Algorithm under Type II and Type III Service Levels

Type II Inventory Pooling Long Chain Assemble-To-Order

n SL 0.85 0.9 0.95 0.85 0.9 0.95 0.85 0.9 0.95

10 1010 3107 4936 27496 83824 42866 50151 61770 84655
20 588 1620 2531 35899 93035 53668 67292 75103 90597
50 461 981 2219 26182 93993 55964 70236 72824 81097

Type III Inventory Pooling Long Chain Assemble-To-Order

n SL 0.85 0.9 0.95 0.85 0.9 0.95 0.85 0.9 0.95

10 4806 8618 7572 24705 30401 43187 29708 31596 71979
20 15760 14493 6280 39229 40189 17444 36352 44435 81039
50 35444 32342 26459 10802 31518 22951 24554 38556 55206

For each instance, we run the SA algorithm for T = 200000 periods. We observe that the SA

algorithms converge within 100000 periods. To better approximate the optimal objective value,

we approximate it by the average value of the objectives in the first 200000 periods, i.e. obj∗ =

1
T

∑T

τ=1 obj(τ) with T = 200000. To evaluate the convergence rate in each instance, we find the

largest t such that | 1
t

∑t

τ=1 obj(τ)−obj∗| ≥ 0.1% ·obj∗. Then we refer to t as the convergence time.

In Table 1, we present the convergence time in different applications, system sizes and service
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levels. Table 1 indicates that under the Type II service level, the SA algorithm converges the

fastest for the inventory pooling problems. Moreover, increasing the system size will not always

increase the convergence time but sometimes reduce the convergence time in inventory pooling

problems. Notice that here the convergence time is the number of iterations or periods the SA

algorithm takes before convergence. For the actual running time in seconds, it will increase in

the system size. We note that increasing the service level often increases the convergence time.

Besides, for inventory pooling problems, the SA algorithm takes more periods to converge under

the Type III service level than that under the Type II service level. For the Long Chain system

and the ATO systems, the convergence time is comparable for the Type II and Type III service

levels. In most instances, the convergence time is within 50000 periods, and only a few instances

take more periods to converge but still less than 100000 periods. For the optimal capacity we

Figure 2 The Gap between the Target Service Level and the Achieved Service Level under Corollary 1
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(a) Long Chain System under Type II Service Level
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(b) Long Chain System under Type III Service Level
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(c) ATO System under Type II Service Level
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(d) ATO System under Type III Service Level

solved by the SA heuristic, we adopt Corollary 1 to check the feasibility of the capacity level. We
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plot the sum of all the positive part of the difference between the target service level and the

achieved service level under Corollary 1 among all products, divided by the number of products,

i.e., 1
n

∑
j∈N

(
βj − 1

t

∑t

τ=1Rj

(
sj
(
ϕw(τ) ,c,D(τ)

)
,D

(t)
j

))+

for the flexible production problems and

the assemble-to-order problems with 20 products in Figure 2. The diminishing of the sum of the

positive part of the gap implies that the target service levels are achieved for all products within

10000 periods.

We have illustrated the convergence rate of the SA algorithm in computing the optimal capac-

ity level, and the convergence rate of the service level by Corollary 1. Once the capacity level

Figure 3 The Gap between the Target Service Level and the Achieved Service Level under Algorithm 1
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(a) Long Chain System under Type II Service Level
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(b) Long Chain System under Type III Service Level
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(c) ATO System under Type II Service Level
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(d) ATO System under Type III Service Level

is fixed, we can use Algorithm 1 (the Max-Weighted-Service policy) to allocate the resources to

achieve the target service level. We now evaluate the convergence of Algorithm 1 in service lev-

els for the solved capacity by the SA algorithm under different settings. We draw T = 100000
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number of independent demand samples, and then generate the w sequence according to Algo-

rithm 1. After that, we draw a random vector w from the generated sequence, and adopt the

allocation policy ϕw to a new independently generated demand sample. We evaluate the gap

in service level as the number of new demand samples increases. Specifically, Figure 3 depicts

1
n

∑
j∈N

(
βj − 1

t

∑t

τ=1Rj

(
sj
(
ϕw(τ) ,c,D(τ)

)
,D

(t)
j

))
for the flexible production problems and the

assemble-to-order problems with 20 products. It is illustrated in Figure 3 that the service level

achieves the target service level at a fast rate.

5.2. Inventory Pooling with Type I Service Constraints

From now on, we will focus on calculating the capacity level for Type I service level. In this

subsection, we consider an inventory pooling example with Type I service constraints. There are

n = 10 customers and the demands are i.i.d. normal distributions with a mean of 10 units. The

standard deviation is set to be either 3 or 5 units. For each value of standard deviation, we test

the performance of our heuristic with six sets of target service levels presented in Table 2. For

example, in Exp1, the service levels vary between 71% and 89% with an average of 80%. In Exp2,

all service levels are equal to 80%.

Table 2 Six Sets of Service Levels for All Customers

β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

Exp1 0.71 0.73 0.75 0.77 0.79 0.81 0.83 0.85 0.87 0.89
Exp2 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
Exp3 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85
Exp4 0.855 0.865 0.875 0.885 0.895 0.905 0.915 0.925 0.935 0.945
Exp5 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
Exp6 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95

For each set of target service levels, we apply the SA heuristic to compute the total inventory.

After adopting SA heuristic, we test the feasibility of the current capacity level by Corollary 1.

If the capacity is infeasible, we increase the capacity to a feasible level using a bisection method.

As a benchmark, we also apply the greedy algorithm of Alptekinoğlu et al. (2013) together with

a bisection search to Exp2, Exp3, Exp 5, Exp6; this algorithm is theoretically optimal when the

demands are i.i.d. and service levels are equal for all customers.

As is reported in Table 3, the SA heuristic performs extremely well; the computed inventory is

always within 1% of the optimal solution for all cases. The optimal solutions for Exp 1 and Exp

4 are not included in Table 3, since the greedy algorithm of Alptekinoğlu et al. (2013) does not

directly apply when service levels are not uniform. For these two sets of parameters, we evaluate

the performance of the SA heuristic with the help of the following proposition.
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Table 3 Capacity Level of Inventory Pooling: Optimal Algorithm vs. SA Heuristic

N(10,3) N(10,5)

Optimal SA Heuristic Optimal SA Heuristic

Exp1 - 78.7213 - 75.6031
Exp2 78.5471 78.5612 74.7758 75.4424
Exp3 85.2919 85.3004 82.7857 83.4993
Exp4 - 92.6152 - 92.4382
Exp5 92.5104 92.5202 91.8715 92.3303
Exp6 100.9395 100.9757 103.4066 103.8292

Proposition 1. Consider inventory pooling with n customers with i.i.d. demand distributions.

The optimal capacity level with differentiated service levels β = (β1, β2, . . . , βn) is greater than or

equal to that with the uniform target service level β̂ = 1
n

∑
j∈N

βj for all customer j ∈N .

The proof is relegated to Appendix J. Therefore, the optimal inventory level required in Exp1

should be at least as high as that in Exp2. However, Table 3 shows that the computed inventory

levels in these two cases are very close to each other, and both of them should be close to their

respective optimal solutions. Similar conclusions can be made for Exp4.

5.3. Flexible Production with Type I Service Constraints

In this subsection, we consider a flexible production problem with m= n= 10 under Type I service

level. The setup for the 10 products/customers is the same as that in the previous subsection. We

will consider different flexibility designs including the dedicated design, long chain, 3-chain, and full

flexibility design. The designs are illustrated in Figure 4. A formal definition of these designs can

be found in Chou et al. (2010); Wang and Zhang (2015). After adopting the SA heuristic, we check

the feasibility of the current capacity level, denoted by c, by Corollary 1. If infeasible, we apply

the Max-Weighted-Service policy with a fixed T to determine which resource capacity should be

increased. Denote j(c) as the product whose service level achieved by the Max-Weighted-Service

policy is the farthest below the target. We use a bisection procedure to increase the capacity of

each resource serving j(c) by the same amount so that j(c) can achieve its target service level.

We repeat the above procedures to increase the capacity of the resources until the capacity level

is feasible. The numerical results are presented in Table 4 and Table 5.

Notice that under full flexibility, the problem reduces to the single-resource pooling case. There-

fore, its optimal capacity level can be computed as reported in the previous subsection. With the

dedicated design, the optimal capacity level can be computed either via a bisection approach or

from the cumulative distribution of the demand. Thus, the capacity levels reported in Table 4 and

Table 5 are optimal for the dedicated design and the full flexibility design. The capacity levels for

the long chain and 3-chain designs are computed by the SA heuristic.
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Figure 4 Flexibility structures

Resource Product Resource Product

2-Chain 3-Chain

Resource Product

Dedicated

Resource Product

Full Flexibility

Table 4 Total capacity of different flexibility structures with 10 customers, i.i.d. demands N(10,3)

Type I Dedicated Long Chain 3-Chain Full Flexibility

Exp1 125.8221 82.4799 78.8428 78.6397
Exp2 125.2486 82.3647 78.8018 78.5612
Exp3 131.0930 87.9725 85.5809 85.3004
Exp4 139.0002 94.3152 92.8290 92.5664
Exp5 138.4465 94.3217 92.7564 92.5202
Exp6 149.3456 102.4108 101.1873 100.9757

Table 5 Total capacity of different flexibility structures with 10 customers, i.i.d. demands N(10,5)

Type I Dedicated Long Chain 3-Chain Full Flexibility

Exp1 143.0368 85.5178 75.8044 75.6022
Exp2 142.0811 85.2705 75.6913 75.4424
Exp3 151.8217 92.2134 83.7568 83.4994
Exp4 165.0003 100.6091 92.7365 92.4172
Exp5 164.0776 100.4087 92.5862 92.3303
Exp6 182.2427 112.2169 104.1527 103.8292

We observe that the performance of 3-chain is almost as good as the full flexibility design for

Type I service constraints. This phenomenon is well-known when total capacity is fixed and the

objective is to optimize demand fulfillment (Chou et al., 2011; Chen et al., 2015; Simchi-Levi and

Wei, 2015, 2012; Désir et al., 2016), and is also observed when the service constraints are of Type II

(Lyu et al., 2019). Table 4 shows that under Type I constraints, the long chain design can achieve

most of the pooling benefit of full flexibility, and the improvement from 3-chain to full flexibility

is negligible. This also provides a verification of the numerical performance of our SA heuristic for

the long-chain and 3-chain designs with Type I service constraints.
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5.4. Heuristic for Assemble to Order

In Section 5.2 and Section 5.3, we have demonstrated that the SA heuristic performs well under

Type I service level when applied to inventory pooling and process flexibility. However, for ATO

problems, the capacity computed by SA Heuristic is at least 30% higher than the optimal level, as

reported in Table 8. This motivates us to develop another local search heuristic that is based on

the Max-Weighted-Service policy for fixed capacity levels.

Our local search heuristic requires a reasonably good lower bound for the optimal capacity

to serve as a starting point, which can be obtained as follows. For each i, let Ui be the set of

products that share component i; if i is product-specific, then Ui contains only one product. This

decomposes the problem into a set of subproblems, each of which is a single-resource allocation

problem. We can either use the SA heuristic or bisection search to compute the optimal capacity

level cLi of component i to achieve the target service levels of the products in Ui. Then it is clear

that cL = (cL1 , · · · , cLm) must be a lower bound for the original problem.

Our heuristic then increases the capacity level to achieve feasibility. If the current capacity level

c is infeasible, then we apply the Max-Weighted-Service policy with a fixed T to determine the

achieved service level, denoted by βj(c), for each j ∈ N . Denote by j(c) the product that has

the largest gap between the target and the achieved service levels βj − βj(c) among all j ∈ N .

Denote Sj(c) as the set containing all the components that are required by product j(c). We then

carefully choose a subset of components in Sj(c) to increase their capacities. Specifically, re-index

all components in Sj(c) such that δ1 ≥ δ2 ≥ · · · ≥ δ|Sj(c)| where δi is the number of products in N
connected to component i. Then let Zj(c) be a set of subsets of Sj(c) such that any Î ∈Zj(c) is of the

form {i, i+1, · · · , i+ r} for some i∈ Sj(c) and some integer r≥ 0 where i+ k denotes i+ k module

|Sj(c)| if i+ k > |Sj(c)|. The total number of subsets in Zj(c) is |Sj(c)|2. For each Î ∈Zj(c) we define

M(Î) as the ratio of the marginal decrease of the total gap of the service levels after increasing the

capacity of each component in Î by one unit, over |Î|. That is,

M(Î) :=

∑
j∈N (βj −βj(c))

+ −
∑

j∈N

(
βj −βj(c+

∑
i∈Î ei)

)+
|Î|

(34)

where (a)+ =max{a,0}, ei is an m-dimensional vector with 1 as the i-th component and 0 as other

components, and the service level βj(c+
∑

i∈Î ei) for each j ∈ N is again computed by applying

the Max-Weighted-Service policy with the same T under the capacity level c+
∑

i∈Î ei. Denote

Î∗ = argmaxÎ∈Zj(c)
M(Î), we then increase the capacity of each component in Î∗ by one unit to

obtain a new capacity level. We repeat the above procedures until the obtained capacity level is

feasible. Our heuristic is formally presented in Algorithm 3.

For the numerical experiments, we consider the following two types of configurations of the ATO

system: the generalized W-systems and non-W-systems. We use W(n) and NW(n) to denote the
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Algorithm 3 Local Search Heuristics

1: Compute a lower bound cL and denote c= cL.

2: Apply the Max-Weighted-Service policy in Algorithm 1 with a fixed T to compute the achieved

service level under c, denoted by βj(c), for each j ∈N .

3: while the capacity level c is infeasible, do

4: Denote j(c) = argmaxj∈N (βj −βj(c)).

5: Denote Sj(c) as a set of all components required by product j(c) and re-index all components

in Sj(c) in non-increasing order of the number of products connected to the component.

6: Denote Zj(c) as the set of subsets of Sj(c) such that any Î ∈ Zj(c) is of the form {i, i +

1, · · · , i+ r} for some i∈ Sj(c) and some integer r≥ 0 where i+k denotes i+k module |Sj(c)|

if i+ k > |Sj(c)|..

7: Compute Î∗ = argmaxÎ∈Zj(c)
M(Î) where M(Î) is defined in (34).

8: Define ĉ= c+
∑

i∈Î∗ ei and denote c= ĉ.

9: end while

10: Output: c.

generalized W-system and non-W-system, respectively, with n products. In NW(n), there are 2n

components and for each i = 1,2, . . . , n, one unit of product i requires one unit of component i,

component n + i and component n + i + 1 where component 2n + 1 denotes component n + 1.

Moreover, in both W(n) and NW(n), the Type I service level of each product is set to be 95%. In

each configuration, the demand of each product is independent normal distributions N(µ,σ) and

is rounded to non-negative integers, where µ (resp. σ) is sampled from a uniform distribution over

{9,10,11} (resp. {2,3,4}). We implement Algorithm 3 on problem instances W(n) and NW(n) for

n= 5,10,15, . . . ,50.

In order to evaluate the performance of Algorithm 3, we further use the sample average approx-

imation (SAA) method as a benchmark. In SAA, we generate K demand scenarios, denoted as

{D(1), . . . ,D(K)}, and for each k = 1, . . . ,K, we introduce a binary variable z
(k)
j for each j ∈N to

indicate whether the demand of product j is fully satisfied under scenario D(k). Then, we solve the

following integer programming:

min
c,z

∑
i∈M

ci (35)

s.t.
∑
j∈N

Aij ·D(k)
j · z(k)j ≤ ci, ∀ i∈M, ∀ k= 1, . . . ,K

K∑
k=1

z
(k)
j ≥ βj ·K ∀ j ∈N

ci ≥ 0, ∀ i∈M, z
(k)
j ∈ {0,1} ∀ j ∈N ,∀ k= 1, · · · ,K
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Notice that the number of binary variables in (35) is n ·K. In our experiments, the computer we

use was not able to solve this integer program when n≥ 35 and K = 500.

However, when K is small (no more than 500), the optimal capacity obtained by solving (35)

may not be feasible under the original demand distribution. Therefore, in order for SAA to be a

useful benchmark, we first consider replacing the original distribution of each problem instance

with a uniform distribution over the K samples {D(1), . . . ,D(K)} for K = 50,100,500. Then, the

solution obtained by SAA must be feasible under this distribution.

We remark that once the samples are fixed, the indicator z(k) determined by (35) is deterministic

for each scenario D(k). Thus, even when the true distribution is the uniform distribution over

{D(1), . . . ,D(K)}, the optimal solution of (35) only characterizes the optimal deterministic policy

and the corresponding optimal objective value can be higher than the optimal total capacity under

the optimal randomized policy, especially for small K. Therefore, in some of the instances, SAA

produces a higher capacity than our Algorithm 3.

For the reasons discussed above, we implement Algorithm 3 for each problem instance assuming

the true distribution is a uniform distribution over the sampled demand {D(1), . . . ,D(K)}. The

numerical results are reported in Table 6 and Table 7, for the generalized W-system and non-

W-system, respectively. Note that for all instances, the gap between the total capacity obtained

by SAA and the total capacity obtained by Algorithm 3 is within 2.51%. For each instance, we

present the number of times that we increase the capacity in Algorithm 3 in the ‘step’ column. In

the W-system, the number of steps for Algorithm 3 is upper bounded by 25 and the run time is

below 1.5 hours. For the non-W-system, since each product requires 3 components, it will require

more computation efforts for Algorithm 3 to reach feasibility. However, even when n= 35,40,45,50

and K = 500, Algorithm 3 still finds a feasible capacity level within 6 hours, while the integer

programming (35) for SAA is out of the memory (OOM) of 16 GB1, and thus no result is obtained.

Recall that results presented in Table 6 and Table 7 treat the sampled distribution as the true

distribution. Therefore, the computed capacity may not be feasible for the problem under the

original (normal) distribution. In fact, we find that none of the SAA solutions is feasible under

the original distribution. For example, consider the W-system with n= 25 and equal target service

level 95%. When the sample size is 50, with the capacity computed by SAA, there are 9 products

that can not achieve a 95% service level. Two of them can only achieve a service level between 89%

and 91%. When the sample size is 500, five products can not achieve the target several levels, but

are very close (higher than 94.3%).

1 The CPUs we use are 2x Intel Xeon Platinum 8268 24C 205W 2.9GHz Processor, and we assign 16 GB memory for
each program.
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Table 6 Performance of SAA and Algorithm 3 in W-System under the Sampled Distribution

Sample n SAA Algorithm 3 Relative Difference in Capacity
Size Capacity Time (Seconds) Capacity Time (Seconds) Step (Capacity by Algorithm 3-Capacity by SAA)/Capacity by SAA

50

5 137 0.46 135 78.28 1 -1.46%
10 248 0.30 248 411.39 5 0.00%
15 377 0.37 375 1557.96 6 -0.53%
20 490 0.36 486 934.92 4 -0.82%
25 624 1.24 618 1678.33 7 -0.96%
30 740 0.66 737 1629.37 7 -0.41%
35 869 1581.35 861 1580.79 7 -0.92%
40 977 1.05 977 2701.97 12 0.00%
45 1127 0.75 1130 4764.06 22 0.27%
50 1229 5.66 1228 3141.24 15 -0.08%

100

5 133 0.31 134 701.59 5 0.75%
10 245 1.02 248 1743.75 7 1.22%
15 382 2.76 386 2635.15 12 1.05%
20 493 59.63 502 3466.15 17 1.83%
25 615 3.09 625 2844.83 15 1.63%
30 736 0.91 743 2063.59 10 0.95%
35 859 79.44 865 2262.32 13 0.70%
40 964 2.15 980 3014.55 17 1.66%
45 1109 6.44 1129 4327.14 24 1.80%
50 1208 1.76 1233 3986.90 22 2.07%

500

5 136 1.24 137 1011.98 4 0.74%
10 250 8.85 251 1170.64 6 0.40%
15 378 7.28 381 1740.91 9 0.79%
20 491 22.41 495 1937.38 10 0.81%
25 617 2478.16 622 2476.43 14 0.81%
30 727 116.04 736 3078.88 17 1.24%
35 OOM 866 2355.64 19
40 OOM 970 2534.21 22
45 OOM 1128 3471.02 25
50 OOM 1231 3561.52 23

To ensure the capacity is also feasible for the original distribution, we implement Algorithm 3

and the SA heuristic for each problem instance using the original (normal) distribution. The results

are presented in Table 8. We observe that the total capacity obtained by directly implementing the

SA heuristic is always much higher than the total capacity obtained by Algorithm 3. The difference

is between 29.8% and 35.7% for the W-system, and between 65% and 72.9% for the non-W-system.

We demonstrate in this subsection how the Max-Weighted-Service policy can be used in a simple

local search algorithm to compute a near-optimal capacity level. We leave it for future research to

develop more sophisticated and computationally efficient algorithms with better performance.

6. Conclusions

In this paper, we present a general framework to study two-stage capacity allocation and demand

fulfillment with individual service constraints. We propose the Max-Weighted-Service policy and

prove its asymptotic optimality for a general class of problems. When the set of feasible fulfilled

demand is a polymatroid and when both the allocation cost function and the service measure func-

tion are linear in fulfilled demand, a randomized index policy is asymptotically optimal. Moreover,

we formulate our model as a minimax stochastic program so that the optimal capacity level can
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Table 7 Performance of SAA and Algorithm 3 in Non-W-System under the Sampled Distribution

Sample n SAA Algorithm 3 Relative Difference in Capacity
Size Capacity Time (Seconds) Capacity Time (Seconds) Step (Capacity by Algorithm 3-Capacity by SAA)/Capacity by SAA

50

5 217 0.87 214 2043.32 5 -1.38%
10 401 1.23 401 5222.18 12 0.00%
15 615 1.45 629 9538.34 25 2.28%
20 810 3.85 804 5074.73 18 -0.74%
25 810 3.85 804 5074.73 18 -0.74%
30 1241 16.29 1257 14537.71 44 1.29%
35 1461 30.18 1469 15358.62 49 0.55%
40 1641 23.74 1647 13937.40 54 0.37%
45 1906 72.80 1905 15189.89 54 -0.05%
50 2076 65.31 2108 23989.59 85 1.54%

100

5 210 0.96 212 2506.92 7 0.95%
10 395 1.73 403 4504.88 13 2.03%
15 630 14.72 644 8662.06 28 2.22%
20 821 1286.46 834 9627.64 32 1.58%
25 1035 2140.52 1061 16142.44 47 2.51%
30 1238 5504.34 1246 10230.32 33 0.65%
35 1448 4728.77 1458 12012.32 39 0.69%
40 1629 14281.35 1658 14278.87 58 1.78%
45 1892 17240.81 1914 17237.81 60 1.16%
50 2065 25316.04 2098 25314.95 73 1.60%

500

5 216 9.53 221 4366.93 11 2.31%
10 407 32.80 408 3411.44 12 0.25%
15 630 6651.68 634 6650.38 23 0.63%
20 819 6868.56 823 6866.42 24 0.49%
25 1039 11074.69 1047 11071.73 35 0.77%
30 1241 11162.33 1251 11157.59 32 0.81%
35 OOM 1463 12377.60 43
40 OOM 1648 15255.82 53
45 OOM 1932 17654.68 75
50 OOM 2118 21209.06 88

Table 8 Capacity Solved by Algorithm 3 and SA Heuristic under the Original Distribution

n W-System Non-W-System
Algorithm 3 SA Heuristic Algorithm 3 SA Heuristic

5 137 186 220 363
10 251 337 411 711
15 380 501 636 1075
20 494 654 836 1427
25 627 817 1075 1794
30 741 969 1262 2140
35 868 1133 1489 2506
40 970 1279 1655 2842
45 1124 1459 1955 3239
50 1229 1603 2129 3571

be computed or approximated by applying existing first-order optimization algorithms, such as the

mirror descent SA algorithm.

Our results are derived by a strong duality result formulated in Theorem 2, for any fixed capacity

level. We demonstrate the potential use of strong duality to analyze optimal capacity level for

problems studied in the literature, i.e., inventory pooling and assemble to order with two products

and with i.i.d. uniform distribution.



32 Jiang, Wang and Zhang: Optimal Capacity Rationing of Shared Resources

Theorem 2 can also be used to obtain further analytical results. For example, consider inventory

pooling with i.i.d. common strictly increasing continuous demand distribution function, equal target

service level β, and Type I service constraints. When the number of customers goes to infinity,

we are able to derive a closed-form expression for the asymptotically optimal inventory level per

customer. We call a per customer capacity level c∗ asymptotically optimal if c∗ is the smallest value

of c such that the capacity level n · c is feasible as n→∞. Then we have

c∗ =max
ξ

{ξ− 1

β
ED̃[(ξ− D̃)+]}.

When the common distribution has a finite mean µ and a finite standard deviation σ, we are able

to obtain the following bounds on c∗

βµ−
√
β(1−β)σ≤ c∗ ≤ βµ.

The formal proof is relegated to Appendix I.

In our formulation (10), there is exactly one service constraint for each customer. However, our

approach continues to apply even when there are multiple service constraints per customer. For

example, a customer can impose both Type I and Type II service constraints. Assume that service

constraints are given by

Eϕ̃,D̃[R
k
j (sj(ϕ̃,c, D̃), D̃j)]≥ βk

j , ∀j ∈N , k= 1, ...,K,

where Rk
j is the kth service measure function of customer j. Then we can define

ĝ(w,c,D) = max
∑
j∈N

K∑
k=1

wk
jR

k
j (sj,Dj)

s.t. s∈ P (c,D)

Then we obtain as generalization of Corollary 1. More specifically, c is feasible if and only if

ED[ĝ(w,c,D)]≥
∑
j∈N

K∑
k=1

wk
j β

k
j ∀w≥ 0.

We can also show that a generalization of the Max-Weighted-Service policy is optimal.

Instead of minimizing the total capacity level subject to service level constraints, we can max-

imize a (concave) function of achieved service levels for any given fixed capacity level. The new

formulation can always be formulated as a concave-convex stochastic saddle point problem, and

thus can be solved by existing stochastic approximation algorithms.

We have discussed that our capacity rationing policy is applicable to a periodic-review infinite

time horizon model where we assume the capacity is perishable and unmet demand is lost. It is
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more challenging to analyze the problem when unmet demand is backlogged; see Shi et al. (2019).

This is a topic of our ongoing research.
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Appendix A: Proof of Lemma 1

Proof: The equations hold due to our definition of deterministic policies. To see this, consider

any given deterministic policy ϕ ∈ Φ. It determines a unique allocation (y(ϕ,c,D), s(ϕ,c,D)) ∈
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P (c,D) for every demand realization D. Thus (y(ϕ,c,D), s(ϕ,c,D)) is a feasible solution to (16).

This implies that

f(y(ϕ,c,D))−
∑
j∈N

wj ·Rj(sj(ϕ,c,D),Dj)≥ g(w,c;D)

and thus

F (w,ϕ) =ED̃[f(y(ϕ,c, D̃))]−
∑
j∈N

wj ·ED̃[Rj(sj(ϕ,c, D̃), D̃j)]≥ED̃[g(w,c; D̃)]

holds for any ϕ∈Φ. Thus,

inf
ϕ∈Φ

F (w,ϕ)≥ED̃[g(w,c; D̃)]

On the other hand, by the definition of ϕw, we have that

g(w,c;D) = f(y(ϕw,c,D))−
∑
j∈N

wj ·Rj(sj(ϕw,c,D),Dj)

and thus

ED̃[g(w,c; D̃)] = F (w,ϕw)≥ inf
ϕ∈Φ

F (w,ϕ)

Therefore, equality (17) holds. □

Appendix B: Proof of Theorem 2

We first prove the following lemma, which will lead to our final result. Its proof is relegated to the

Appendix C.

Lemma 3. Under Assumption 2, there exists a subset of deterministic policies ΦW such that for

any w≥ 0, we have

inf
ϕ∈Φ

F (w,ϕ) = F (w,ϕw) = min
ϕ∈ΦW

F (w,ϕ). (36)

Moreover, for any sequence of randomized policies {λk}k≥1 such that λk ∈ χW := {λ ≥ 0 :∫
ϕ∈ΦW

dλ(ϕ) = 1} for each integer k, there exists a policy λ̂∈ χ such that∫
ϕ∈Φ

ED̃[f(y(ϕ,c, D̃))]dλ̂(ϕ)≤ limsup
k→∞

∫
ϕ∈Φ

ED̃[f(y(ϕ,c, D̃))]dλk(ϕ) (37)

and∫
ϕ∈Φ

ED̃[Rj(sj(ϕ,c, D̃), D̃j)]dλ̂(ϕ)≥ lim inf
k→∞

∫
ϕ∈Φ

ED̃[Rj(sj(ϕ,c, D̃), D̃j)]dλk(ϕ), ∀j ∈N . (38)

We are now ready to prove the strong duality between (11) and (12). We first use weak duality to

show that Obj (11)≥Obj (12). In order to prove the other direction, we construct a sequence of

randomized policy λk such that the achieved service level is at least βj − Ĉ
k
for each j ∈N , for some

constant Ĉ > 0. Then, by letting k→∞, we use Lemma 3 to show that there exists a randomized

policy such that the target service level βj is achieved for each j ∈N and the expected allocation

cost is upper bounded by Obj (12), which completes our proof.
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Proof of Theorem 2: We denote Obj (11) as the objective value of (11) and denote Obj (12)

as the objective value of (12). When (11) is feasible, we get

Obj (11)≥Obj (12) (39)

by weak duality (Shapiro, 2001). In the remaining part of the proof, we assume that Obj (12) is

finite, and we prove that (11) is feasible and Obj (11) =Obj (12).

Note that

inf
λ∈χ

L(w, λ) =
∑
j∈N

wj ·βj + inf
ϕ∈Φ

F (w,ϕ) =
∑
j∈N

wj ·βj + inf
ϕ∈ΦW

F (w,ϕ) = inf
λ∈χW

L(w, λ) (40)

where the second equality holds due to Lemma 3. Then we have

sup
w≥0

inf
λ∈χW

L(w, λ) =Obj (12)

For each integer k > 1, we define the set Wk = {w≥ 0 :
∑

j∈N wj ≤ k}. Obviously, it holds that

sup
w∈Wk

inf
λ∈χW

L(w, λ)≤ sup
w≥0

inf
λ∈χW

L(w, λ) =Obj (12)

By definition, χW is a convex set. Moreover, note that Wk is a convex compact set and L(w, λ) is

linear in w (resp. λ) when λ (resp. w) is fixed. Then by Sion’s minimax theorem (Sion, 1958), we

must have

inf
λ∈χW

sup
w∈Wk

L(w, λ) = inf
λ∈χW

max
w∈Wk

L(w, λ) = max
w∈Wk

inf
λ∈χW

L(w, λ) = sup
w∈Wk

inf
λ∈χW

L(w, λ)≤Obj (12)

Thus, there exists a randomized policy λk ∈ χW such that

sup
w∈Wk

L(w, λk)≤ inf
λ∈χW

sup
w∈Wk

L(w, λ)+
1

k
≤Obj (12)+

1

k
(41)

Denote Ĉ =Obj (12) + 1. We now claim that λk achieves a service level at least βj − Ĉ
k
for each

j ∈N , i.e. ∫
ϕ∈Φ

ED̃[Rj(sj(ϕ,c, D̃), D̃j)]dλl(ϕ)≥ βj −
Ĉ

k
. (42)

Otherwise, suppose there exists a j0 ∈N such that

Ĉ < k ·
(
βj0 −

∫
ϕ∈Φ

ED̃[Rj0(sj0(ϕ,c, D̃), D̃j0)]dλk(ϕ)

)
.

Then we define ŵ ∈Wk such that ŵj0 = k and ŵj = 0 for all j ̸= j0. By construction, we have

Ĉ < ŵj0 ·
(
βj0 −

∫
ϕ∈Φ

ED̃[Rj0(sj0(ϕ,c, D̃), D̃j0)]dλk(ϕ)

)
=
∑
j∈N

ŵj ·
(
βj −

∫
ϕ∈Φ

ED̃[Rj(sj(ϕ,c, D̃), D̃j)]dλk(ϕ)

)
≤
∑
j∈N

ŵj ·
(
βj −

∫
ϕ∈Φ

ED̃[Rj(sj(ϕ,c, D̃), D̃j)]dλk(ϕ)

)
+ED̃[f(y(ϕ,c, D̃))]

= L(ŵ, λk)≤ sup
w∈Wk

L(w, λk)≤ Ĉ
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where the second inequality holds since the allocation cost function f is non-negative and the last

inequality follows from (41) since 1≥ 1
k
. This is a contradiction.

From Lemma 3, for the sequence {λk}k≥1, there exists a randomized policy λ̂∈ χ such that (37)

and (38) hold. Specifically, for each j ∈N , we have∫
ϕ∈Φ

ED̃[Rj(sj(ϕ,c, D̃), D̃j)]dλ̂(ϕ)≥ lim inf
k→∞

∫
ϕ∈Φ

ED̃[Rj(sj(ϕ,c, D̃), D̃j)]dλk(ϕ)

≥ lim inf
k→∞

βj −
Ĉ

k
= βj

Thus, (11) is feasible and λ̂ is a feasible solution to (11). Moreover, from (37), we have

Obj (11)≤
∫
ϕ∈Φ

ED̃[f(y(ϕ,c, D̃))]dλ̂(ϕ)≤ limsup
k→∞

∫
ϕ∈Φ

ED̃[f(y(ϕ,c, D̃))]dλk(ϕ)

≤ limsup
k→∞

sup
w∈Wk

L(w, λk)≤ limsup
k→∞

Obj (12)+
1

k
=Obj (12)

where the third inequality follows from the fact that∫
ϕ∈Φ

ED̃[f(y(ϕ,c, D̃))]dλk(ϕ) =L(0, λk)≤ sup
w∈Wk

L(w, λk), ∀k > 1

and the last inequality follows from (41). Together with the weak duality established in (39), we

have Obj (11) =Obj (12). □

Appendix C: Proof of Lemma 3

We first present the following well-known result, which will be useful for our proof of Lemma 3.

Theorem 6. (Banach-Saks theorem) Let {xk}∞k=1 be a bounded sequence in the Hilbert space H,

then there exists a subsequence {nk}∞k=1 of {1,2, . . . , k, . . .} and a point x∈H such that

1

k
·

k∑
l=1

xnl

converges strongly to x as k→∞.

Now we are ready to prove Lemma 3. The following is an outline of the proof of Lemma 3. We first

represent each policy as an element in a Hilbert space and interpret each term in (37) and (38)

as an inner product that defines the metric of the Hilbert space. We then apply the Banach-Saks

theorem to prove weak convergence of the running average of a subsequence to a limiting element

in the Hilbert space, which directly implies that the cost and the service level of the running

average converge to those of the limiting element. Finally, we show that the limiting element can

be interpreted back as a policy, which establishes the existence of λ̂ in Lemma 3.
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Proof of Lemma 3: Note that under Assumption 2, the service measure function for each j ∈N
is piece-wise linear in sj. Thus, the objective function of (16) is a piece-wise linear function. Then,

problem (16) can be solved by first enumerating all possible vectors k∈K := {(k1, k2, · · · , kn) : kj =
1,2, . . . ,Kj}, such that

aj,kj ·Dj ≤ sj <aj,kj+1 ·Dj,

and then for each set of values k solving

g(w,c;D;k) := min
s,y

f(y)−
∑
j∈N

wj ·Rj(sj,Dj)

s.t. (s,y)∈ P (c,D)

aj,kj ·Dj ≤ sj ≤ aj,kj+1 ·Dj ∀j ∈N .

(43)

Note that in the problem (43), we replace the constraint sj < aj,kj+1 ·Dj with sj ≤ aj,kj+1 ·Dj.

This is because for fixed kj, we can simply define Rj(aj,kj+1 ·Dj,Dj) = limsj→(aj,kj+1·Dj)−Rj(sj,Dj)

denoting the left limit when solving (43). Then the minimum value of g(w,c;D;k) over all possible

k∈K is still the same as the optimal value of the original problem (16).

By definition of P (c,D), the linear program (43) can be reformulated as:

g(w,c,D;k) =min rTw,Dŷ

s.t. Aŷ= vD

ŷ≥ 0

(44)

by choosing the appropriate rw,D,A and vD, where vD is independent of w and A is independent

of w and D. Although all the coefficients rw,D, vD and A should also be dependent on k, we drop

the dependency for simplicity of notation. The dependence of vD on c is also dropped since c is

fixed. We now focus on LP (44).

Denote D as the support of the demand distribution. Given k, for each w≥ 0 and D∈D, there

could be multiple optimal solutions. However, it is enough for us to only consider one optimal basic

solution that is determined by a basis b ∈ B, where B is the set of all bases of A. Since A has a

finite size, the total number of all bases, |B| should be finite. Then for any w≥ 0 and D ∈D, an

optimal solution of (16) is uniquely determined by an element in the finite set V =K×B. For the
rest of the proof, we only consider such optimal solutions. Without loss of generality, we sort the

elements in the set V in a fixed sequence and we will use the order of an element in this sequence

to denote this element by abuse of notation.

For each fixedw ∈W , we define a deterministic policy ϕ̂w as follows. For anyD∈D, let ϕ̂w(c,D)

be the specified optimal solution of (16) determined by one element from V. As a direct consequence

of this definition, for each w ∈W , we have that

ϕ̂w ∈ argminϕ∈ΦF (w,ϕ).



40 Jiang, Wang and Zhang: Optimal Capacity Rationing of Shared Resources

We define ΦW = {ϕ̂w : ∀w ∈W}. Then, our proof of (36) is finished. In the remaining part of the

proof, we prove (37) and (38).

For each D∈D and each element v ∈ V, we further denote a(v,D) as the basic solution of (44)

determined by the element v if feasible, i.e., a(v,D) ∈ P (c,D). If infeasible, we simply denote

a(v,D) = 0. Then, from definition, for each w ∈W and each D ∈ D, the allocation ϕ̂w(c,D) ∈

{a(v,D)}∀v∈V .

We now focus on the sequence of randomized policies {λk} such that λk ∈ χW := {λ ≥ 0 :∫
ϕ∈ΦW

dλ(ϕ) = 1}. From the above argument, we know that for any k and any D∈D, the allocation

of λk is simply a randomization over {a(v,D)}∀v∈V . Then, we define a vector ψk(D)∈R|V|, where

|V| denotes the cardinality of the finite set V, such that the v-th component of ψk(D), denoted as

ψk
v (D), denotes the probability that the allocation of λk equals a(v,D), given demand realization

D. Obviously, we have that

ψk(D)∈L := {x∈R|V| : x≥ 0,

|V|∑
v=1

xv = 1}, ∀D∈D (45)

Following this definition, each randomized policy λk is equivalently represented by ψk =

(ψ(D),∀D∈D), which is a measurable function mapping the set D⊂Rn to the set L⊂R|V|. From

(45), it is easy to see that

∥ψk
v∥2L2 =

∫
D∈D

|ψk
v (D)|2dµ(D)≤ 1, ∀v= 1, . . . , |V| (46)

Here, µ denotes the measure over D specified by the demand distribution and ∥ · ∥L2 denotes the

L2-norm. Then, for each k and each v= 1, . . . , |V|, we conclude that ψk
v ∈L2(D, µ), where L2(D, µ)

denotes the L2 space containing all measurable functions over the set D with finite L2-norm.

For each v= 1, . . . , |V|, we further denote Lv as a copy of the space L2(D, µ), which is a Hilbert

space. We then denote H as the direct sum of the spaces {Lv}|V|
v=1, i.e.,

H=

|V|⊕
v=1

Lv := {∀φ= (φv, v= 1, . . . , |V|) such that φv ∈Lv for each v}

Clearly, H is still a Hilbert space, equipped with the inner product ⟨·, ·⟩H defined as:

⟨φ1,φ2⟩H =

|V|∑
v=1

∫
D∈D

φ1
v(D) ·φ2

v(D)dµ(D), ∀φ1,φ2 ∈H

Denote ∥ · ∥H as the norm on the Hilber space H induced by the inner product ⟨·, ·⟩H. For each k,

it holds directly that ψk ∈H and from (46), we have

∥ψk∥2H =

|V|∑
v=1

∫
D∈D

|ψk
v (D)|2dµ(D)≤ |V| (47)
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We then show that the expected allocation cost and service level of the policy λk can be expressed

as the inner product in the space H. For each v ∈ V and each D∈D, we specify allocation y(v,D)

and fulfillment s(v,D) such that a(v,D) = (y(v,D), s(v,D)). Then, we define

η(0) = (η(0)(D),∀D∈D) where η(0)(D) = (f(y(v,D)),∀v ∈ V)∈R|V|

Note that

∥η(0)∥2H =

|V|∑
v=1

∫
D∈D

|(f(y(v,D))|2dµ(D)≤ Ĉ1 ·
∫
D∈D

∥D∥22dµ(D)<∞

for some constant Ĉ1 > 0, where the first inequality follows from Assumption 2b and the fact that

f(·) is a linear function, and the second inequality follows from the demand distribution has a

bounded second moment. We conclude that η(0)v ∈L2(D, µ) for each v= 1, . . . , |V| and thus η(0) ∈H.

Moreover, since the function f(y(ϕ,c,D)) is integrable over D ×Φ with respect to the measure

µ×λk, then we have∫
ϕ∈Φ

ED̃[f(y(ϕ,c, D̃))]dλk(ϕ) =

∫
ϕ∈Φ

∫
D∈D

f(y(ϕ,c,D))dµ(D)dλk(ϕ)

=

∫
D∈D

∫
ϕ∈Φ

f(y(ϕ,c,D))dλk(ϕ)dµ(D)

where the second equality follows since Fubini’s theorem implies that we can interchange the order

of integral. Thus, it holds that∫
ϕ∈Φ

ED̃[f(y(ϕ,c, D̃))]dλk(ϕ) =

∫
D∈D

|V|∑
v=1

ψk
v (D) · η(0)v (D)dµ(D) = ⟨ψk,η(0)⟩H (48)

Thus, for each k, the expected allocation cost of the randomized policy λk can be expressed as the

inner product of ψk and η(0) in the space H. Similarly, for each j ∈N , we define

η(j) = (η(j)(D),∀D∈D) where η(j)(D) = (Rj(sj(v,D),Dj),∀v ∈ V)∈R|V|

Clearly, we have that

∥η(j)∥2H =

∫
D∈D

∥(Rj(sj(v,D),Dj),∀v ∈ V)∥22dµ(D)≤C1 ·
∫
D∈D

∥(max{1,Dj},∀j ∈N )∥22dµ(D)<∞

Then, we conclude that for each j ∈N , η(j) ∈H and we have∫
ϕ∈Φ

ED̃[Rj(sj(ϕ,c, D̃), D̃j)]dλk(ϕ) =

∫
D∈D

|V|∑
v=1

ψk
v (D) · η(j)v (D)dµ(D) = ⟨ψk,η(j)⟩H (49)

Thus, for each k, the service level for customer j obtained by the randomized policy λk can be

expressed as the inner product of ψk and η(j) in the space H, for each j ∈N .
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From (47), we know that the sequence {ψk}∀k is a bounded sequence in the Hilbert space H.

Then, from Banach-Saks theorem, there exists a subsequence {nk}∀k of {1,2, . . .} and ψ̂ ∈H, such

that the sequence { 1
k
·
∑k

l=1ψ
nl}∀k converges strongly to ψ̂ in the space H. This implies that the

sequence { 1
k
·
∑k

l=1ψ
nl}∀k converges weakly to ψ̂, then from (48), we have that

⟨ψ̂,η(0)⟩H = lim
k→∞

⟨1
k
·

k∑
l=1

ψnl ,η(0)⟩H = lim
k→∞

1

k
·

k∑
l=1

⟨ψnl ,η(0)⟩H ≤ limsup
k→∞

⟨ψk,η(0)⟩H

= limsup
k→∞

∫
ϕ∈Φ

ED̃[f(y(ϕ,c, D̃))]dλk(ϕ)

(50)

For each j ∈N , from (49), we have that

⟨ψ̂,η(j)⟩H = lim
k→∞

⟨1
k
·

k∑
l=1

ψnl ,η(j)⟩H ≥ lim inf
k→∞

⟨ψk,η(j)⟩H = lim inf
k→∞

∫
ϕ∈Φ

ED̃[Rj(sj(ϕ,c, D̃),Dj)]dλk(ϕ)

(51)

It only remains to show that ψ̂ can be expressed as a randomized policy λ̂. To that end, we

first define a set containing all D ∈ D such that ψ̂(D) does not characterize a distribution over

{a(v,D)}∀v∈V :

D̂ := {D∈D : ψ̂(D) /∈L}

where the set L is defined in (45). We have the following result.

Claim 1. It holds that µ(D̂) = 0.

For those D∈ D̂, we can simply change ψ̂(D) into a point in the set L. In this way, we construct

a ψ̂ such that ψ̂(D)∈L for any D∈D. Since µ(D̂) = 0, we conclude that (50) and (51) still hold.

Now we show that ψ̂ can be characterized as a randomized policy λ̂. For each D∈D, we divide

the interval [0,1] into a set of sub-intervals {Iv(D)}v∈V , such that ψ̂v(D) = |Iv(D)| for each v ∈ V,
where | · | denotes the length (Lebesgue measure) of the sub-interval. Note that for each D ∈ D,

the randomized allocation specified by ψ̂(D) can be interpreted as picking up a point x uniformly

from the interval [0,1], and implementing the allocation a(v,D) if and only if x∈ Iv(D). Thus, for

each x∈ [0,1], we can specify a deterministic policy

ϕx = (ϕx(D),∀D∈D) where ϕx(D) = a(v,D) if and only if x∈ Iv(D)

We define the randomized policy λ̂ as the uniform distribution over the set of deterministic policies

{ϕx}∀x∈[0,1]. We then prove (37) and (38).

For the expected allocation cost, we have that∫
ϕ∈Φ

ED̃[f(y(ϕ,c, D̃))]dλ̂(ϕ) =

∫
x∈[0,1]

∫
D∈D

[f(y(ϕx,c, D̃))]dµ(D)dx

=

∫
D∈D

∫
x∈[0,1]

[f(y(ϕx,c, D̃))]dx dµ(D)
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where the second equality follows by noting that f(y(ϕx,c, D̃)) is integrable over D× [0,1], then

Fubini’s theorem implies that we can interchange the order of integration. Moreover, we have∫
D∈D

∫
x∈[0,1]

[f(y(ϕx,c, D̃))]dx dµ(D) =

∫
D∈D

|V|∑
v=1

f(y(v,D)) · |Iv(D)|dµ(D)

=

∫
D∈D

|V|∑
v=1

f(y(v,D)) · ψ̂v(D)dµ(D) = ⟨ψ̂,η(0)⟩H

Combing with (50), we have that∫
ϕ∈Φ

ED̃[f(y(ϕ,c, D̃))]dλ̂(ϕ) = ⟨ψ̂,η(0)⟩H ≤ limsup
k→∞

∫
ϕ∈Φ

ED̃[f(y(ϕ,c, D̃))]dλk(ϕ)

Similarly, for each j ∈N , we have that∫
ϕ∈Φ

ED̃[Rj(sj(ϕ,c, D̃), D̃j)]dλ̂(ϕ) =

∫
x∈[0,1]

∫
D∈D

[Rj(sj(ϕx,c, D̃),Dj)]dµ(D)dx

=

∫
D∈D

∫
x∈[0,1]

[Rj(sj(ϕx,c, D̃),Dj)]dx dµ(D)

=

∫
D∈D

|V|∑
v=1

Rj(sj(v,D),Dj) · |Iv(D)|dµ(D) = ⟨ψ̂,η(j)⟩H

≥ lim inf
k→∞

∫
ϕ∈Φ

ED̃[Rj(sj(ϕ,c, D̃),Dj)]dλk(ϕ)

which completes our proof. □

Proof of Claim 1: We prove our result by contradiction. Suppose that µ(D̂)> 0, then for each

integer p, we define the set

Dp = {D∈D : dist(ψ̂(D),L)≥ 1

p
}

where dist(ψ̂(D),L) = infx∈L ∥ψ̂(D)− x∥22 denoting the distance from the point ψ̂(D) ∈ R|V| to

the set L ⊂ R|V|. Since the set L is closed, for any D ∈ D̂ = {D ∈ D : ψ̂(D) /∈ L}, it holds that

dist(ψ̂(D),L)> 0, which implies that

D̂=
∞⋃
p=1

Dp

Moreover, note that D1 ⊂D2 ⊂ · · · ⊂Dp ⊂ . . . , for each integer p, we define the set Ep =Dp \Dp−1 =

{D ∈ Dp :D /∈ Dp−1}, where D0 = ∅. Obviously, the sets {Ep} are mutually disjoint and it holds

that

D̂=
∞⋃
p=1

Ep and Dp =

p⋃
l=1

El for each integer p

Then, from the coutable additivity of the measure µ, we have

µ(D̂) = µ(
∞⋃
p=1

Ep) =
∞∑
p=1

µ(Ep) = lim
p→∞

p∑
l=1

µ(El) = lim
p→∞

µ(

p⋃
l=1

El) = lim
p→∞

µ(Dp)
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Thus, we conclude that there exists an integer p0, such that µ(Dp0)> 0.

On the other hand, the sequence { 1
k
·
∑k

l=1ψ
nl}∀k converges strongly to ψ̂ implies that the

sequence { 1
k
·
∑k

l=1ψ
nl}∀k converges to ψ̂ in measure, i.e., for any integer p,

lim
k→∞

µ

({
D∈D : ∥1

k
·

k∑
l=1

ψnl(D)− ψ̂(D)∥22 ≥
1

p

})
= 0

Moreover, note that L is a convex set, then for each D∈D, we must have 1
k
·
∑k

l=1ψ
nl(D)∈L for

each k. Thus, it holds that

dist(ψ̂(D),L)≤ ∥1
k
·

k∑
l=1

ψnl(D)− ψ̂(D)∥22, ∀k

which implies that the set Dp is contained in the set
{
D∈D : ∥ 1

k
·
∑k

l=1ψ
nl(D)− ψ̂(D)∥22 ≥ 1

p

}
for

each k. As a result, we have that

µ(Dp)≤ µ

({
D∈D : ∥1

k
·

k∑
l=1

ψnl(D)− ψ̂(D)∥22 ≥
1

p

})
, ∀k

and thus µ(Dp) = 0 for any integer p, which is a contradiction. □

Appendix D: Examples

We illustrate through the following examples that Corollary 1 can be used to find optimal capacity

for problems studied in Mirchandani and Mishra (2002) and Swaminathan and Srinivasan (1999).

Example 1. Consider an inventory pooling example with one resource and two customers, i.e.,

m= 1 and n= 2. Assume the demand of the two customers are i.i.d. uniform distribution in [0,1].

We are interested in Type I service levels with β1+β2
2

≥ 75% and the total inventory level c∈ [1,2].

For any fixed w≥ 0, we assume without loss of generality that w1 ≥w2. Then solving the problem

(16) gives us the optimal objective value as follows

max
(y,s)∈P (c,D)

∑
j∈N

wjRj(sj,Dj) =


w1 +w2 if D1 +D2 ≤ c

w1 if D1 ≤ c and D1 +D2 > c

w2 if D2 ≤ c and D1 > c

0 else

Therefore, if w1 ≥w2, we have

ED̃[ max
(y,s)∈P (c,D)

∑
j∈N

wjRj(sj,Dj)]

= (w1 +w2)

∫ 1

0

∫ min{c−D1,1}

0

dD2dD1 +w1

∫ 1

0

∫ 1

min{c−D1,1}
dD2dD1 +w2

∫ 1

c

∫ c

0

dD2dD1

= w1 +w2(1−
1

2
(2− c)2) (52)
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and

max
w≥0

∑
j∈N

wjβj −ED̃[ max
(y,s)∈P (c,D)

∑
j∈N

wjRj(sj,Dj)] =w1β1 +w2β2 −w1 −w2(1−
1

2
(2− c)2).

According to Corollary 1, c is feasible if and only if

max
w1≥w2≥0

w1(β1 − 1)+w2

(
β2 − (1− 1

2
(2− c)2

)
≤ 0.

Notice that β1 − 1≤ 0 and thus the maximum is attained when w1 =w2. Therefore, the condition

above is equivalent to

max
w2≥0

w2

(
β1 +β2 − (2− 1

2
(2− c)2

)
≤ 0,

or

2− 1

2
(2− c)2 ≥ β1 +β2.

It follows immediately that in order to achieve individual Type I service levels β1 and β2 respectively,

the minimum inventory is

c∗ = 2− 2

√
1− β1 +β2

2
.

This generalizes Theorem 2 of Swaminathan and Srinivasan (1999). For example, when β1 = β2 =

80%, the minimum inventory level is 1.106.

We compare this with the minimum inventory level under a joint Type I service level β. For the

same example, the minimum inventory c should satisfy the constraint

Pr{D1 +D2 ≤ c} ≥ β

which implies that

c≥ 2−
√
2− 2β.

When β = 80%, the minimum inventory level is 1.368, which is 24% higher than that with individual

80% service constraints.

Example 2. Consider a W-system of the assemble-to-order model with two products and three

components, i.e., n= 2 and m= 3. Components 1 and 2 are product-specific, while component 3

is common to both products. Under Type I service constraints, the problem (16) is specified as

max
(y,s)∈P (c,D)

∑
j∈N

wjRj(sj,Dj) = max w1z1 +w2z2 (53)

s.t. z1D1 + z2D2 ≤ c3

zjDj ≤ cj j = 1,2,

zj ∈ {0,1} j = 1,2.
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Similar to Example 1, we assume the demand of the two products are i.i.d. uniform distribution

in [0,1]. With this assumption, it is easy to see that cj ∈ [βj,1] for j = 1,2, and c3 ≤ c1 + c2. We

consider sufficiently high target service levels so that c3 ≥ 1. For any fixedw≥ 0, we assume without

loss of generality that w1 ≥w2. Then the optimal objective value of the problem (16) is

max
(y,s)∈P (c,D)

∑
j∈N

wjRj(sj,Dj) =


w1 +w2 if D1 +D2 ≤ c3, and D1 ≤ c1, and D2 ≤ c2
w1 if D1 ≤ c1 and D2 >min{c3 −D1, c2}
w2 if D2 ≤ c2 and D1 > c1
0 else

Therefore, if w1 ≥w2, we have

ED̃[ max
(y,s)∈P (c,D)

∑
j∈N

wjRj(sj,Dj)]

= (w1 +w2)

∫ c1

0

∫ min{c3−D1,c2}

0

dD2dD1 +w1

∫ c1

0

∫ 1

min{c3−D1,c2}
dD2dD1 +w2

∫ 1

c1

∫ c2

0

dD2dD1

= w1c1 +w2(c2 −
1

2
(c1 + c2 − c3)

2) (54)

and

max
w≥0

∑
j∈N

wjβj −ED̃[ max
(y,s)∈P (c,D)

∑
j∈N

wjRj(sj,Dj)] =w1β1 +w2β2 −w1c1 −w2(c2 −
1

2
(c1 + c2 − c3)

2).

According to Corollary 1, c is feasible if and only if

max
w1≥w2≥0

w1(β1 − c1)+w2

(
β2 − (c2 −

1

2
(c1 + c2 − c3)

2)

)
≤ 0.

Since β1 − c1 ≤ 0, the condition is equivalent to

max
w2≥0

w2

(
β1 +β2 − (c1 + c2 −

1

2
(c1 + c2 − c3)

2)

)
≤ 0,

or

c1 + c2 −
1

2
(c1 + c2 − c3)

2 ≥ β1 +β2.

Notice that the condition depends on c̄ = c1 + c2, but not the individual values of c1 and c2.

Therefore, we can derive the minimum inventory level by solving

min c̄+ c3

s.t. c̄− 1

2
(c̄− c3)

2 ≥ β1 +β2

c̄≤ 2

c̄≥ c3.
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The first two constraints implies that

c3 ≥ 2− 2

√
1− β1 +β2

2
.

Comparing this with the optimal inventory level in Example 1, we see that everything else being

equal, the common component in the W system holds more inventory than that in single-resource

pooling. Solving the optimization problem, we derive that the minimum total inventory level of

the three components is

c̄+ c3 =

{
2(β1 +β2)− 1

4
if β1 +β2 ≤ 15

8

4−
√
4− 2(β1 +β2) if β1 +β2 >

15
8

This is a special case of the main result of Mirchandani and Mishra (2002). A straightforward

extension of this analysis would give a different proof of Theorem 2 of Mirchandani and Mishra

(2002).

Appendix E: Proof of Theorem 3

We first present the two well-known results, which will be useful for our proof of Theorem 3.

Lemma 4. (Azuma’s Inequality (Azuma, 1967)) Suppose {Xk, k= 0,1,2, . . .} is a martingale and

|Xk −Xk−1|< ck almost surely for each k, then for all positive integer N and all positive real ϵ,

P (|XN −X0|> ϵ)≤ 2 · exp( −ϵ2

2
∑N

k=1 c
2
k

)

Lemma 5. (Borel-Cantelli Lemma (Borel, 1909)) Let E1,E2, . . . be a sequence of events in a prob-

ability space. If
∞∑

n=1

P (En)<∞

then

P

(
∞⋂

n=1

∞⋃
k=n

Ek

)
= 0

where
⋂∞

n=1

⋃∞
k=nEk denotes the set of outcomes that occur infinite times with the sequence {Ek}k≥1.

Now we are ready to prove Theorem 3. The main idea of the proof is to show that by following

the dual update step of the Max-Weighted-Service policy, the gap between the expected cost of

our policy and the optimal value of (11), as well as the gap between the achieved and the target

service level, can both be bounded by some functions of the dual variables, which diminish under

carefully chosen step sizes, as T →∞.
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Proof of Theorem 3: We first prove (27). From weak duality (Shapiro, 2001), it holds that

G(w∗)≤Obj (11). Thus, it is enough to prove that

limsup
T→∞

1

T
· ED̃t [f(y(ϕw(t) ,c, D̃t))]≤G(w∗)

holds almost surely. Note that by definition of G(·) and w∗, we have that

G(w∗) =max
w≥0

G(w)≥ 1

T
·

T∑
t=1

G(w(t))

≥ 1

T
·

T∑
t=1

(∑
j∈N

w
(t)
j ·βj + ED̃t [f(y(ϕw(t) ,c, D̃t))]−

∑
j∈N

w
(t)
j · ED̃t [Rj(sj(ϕw(t) ,c, D̃t), D̃t

j)]

)

Re-arranging terms, we have

1

T
·

T∑
t=1

ED̃t [f(y(ϕw(t) ,c, D̃t))]−G(w∗)≤ 1

T
·

T∑
t=1

(
−
∑
j∈N

w
(t)
j ·βj +

∑
j∈N

w
(t)
j · ED̃t [Rj(sj(ϕw(t) ,c, D̃t), D̃t

j)]

)
(55)

We now proceed to upper bound the right hand side of the above inequality. From the update

rule (26), we have that

∥w(t+1)∥2 ≤
∥∥∥(w(t)

j + γT ·
(
βj −Rj

(
sj
(
ϕw(t) ,c,D(t)

)
,D

(t)
j

))
, j ∈N

)∥∥∥2
= ∥w(t)∥2 + γ2

T ·
∥∥∥(βj −Rj

(
sj
(
ϕw(t) ,c,D(t)

)
,D

(t)
j

)
, j ∈N

)∥∥∥2
+2γT ·

∑
j∈N

(
w

(t)
j · ED(t)

[
Rj(sj(ϕw(t) ,c,D(t)),D

(t)
j )
]
−w

(t)
j ·Rj(sj(ϕw(t) ,c,D(t)),D

(t)
j )
)

+2γT ·
∑
j∈N

(
w

(t)
j ·βj −w

(t)
j · ED(t)

[
Rj(sj(ϕw(t) ,c,D(t)),D

(t)
j )
])

(56)

where ∥ · ∥ denotes the L2 norm and we denote (aj, j ∈N ) as a n dimensional vector with aj on

its j-th component for any j ∈N . Moreover, for each t, we denote

Lt =
2

TγT
·
∑
j∈N

(
w

(t)
j · ED(t)

[
Rj(sj(ϕw(t) ,c,D(t)),D

(t)
j )
]
−w

(t)
j ·Rj(sj(ϕw(t) ,c,D(t)),D

(t)
j )
)

(57)

Obviously, {Lt}t≥1 is a sequence of martingale difference with respect to the filtration {Ft}t≥1,

where for each t, Ft denotes the σ-algebra σ
(
D(1), . . . ,D(t)

)
. From the update rule (26), we have

w
(t+1)
j ≤ t · γT · βj for each j ∈ N and each t. Thus, by Assumption 3, there exists a constant Ĉ1

such that |Lt| ≤ Ĉ1 almost surely for each t. Note that it follows from Assumption 3 that for any

w(t) and D̃, we have

∥
(
βj −Rj

(
sj(ϕw(t) ,c, D̃), D̃j

)
, j ∈N

)
∥22 ≤ n(1+C)2. (58)
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Further note that for each t, we have

w
(t)
j · ED(t)

[
Rj(sj(ϕw(t) ,c,D(t)),D

(t)
j )
]
=w

(t)
j · ED̃t

[
Rj(sj(ϕw(t) ,c, D̃t), D̃t

j)
]

(since D̃t ∼D(t))

Then, (56) implies that

∥w(t+1)∥2 ≤ ∥w(t)∥2+γ2
T ·n(1+C)2+Tγ2

T ·Lt+2γT ·
∑
j∈N

(
w

(t)
j ·βj −w

(t)
j · ED̃t

[
Rj(sj(ϕw(t) ,c, D̃t), D̃t

j)
])

and thus, by re-arranging terms, we have∑
j∈N

(
−w(t)

j ·βj +w
(t)
j · ED̃t

[
Rj(sj(ϕw(t) ,c, D̃t), D̃t

j)
])

≥ 1

2γT

(
−∥w(t+1)∥2 + ∥w(t)∥2 + γ2

T ·n(1+C)2 +Tγ2
T ·Lt

)
(59)

Plugging (59) into (55), we have that

1

T
·

T∑
t=1

ED̃t [f(y(ϕw(t) ,c, D̃t))]−G(w∗)

≤ 1

T
·

T∑
t=1

(
−
∑
j∈N

w
(t)
j ·βj +

∑
j∈N

w
(t)
j · ED̃t [Rj(sj(ϕw(t) ,c, D̃t), D̃t

j)]

)

≤ 1

2TγT
·

T∑
t=1

{
∥w(t)∥2 −∥w(t+1)∥2 + γ2

T ·n(1+C)2 +Tγ2
T ·Lt

}
=

1

2TγT
· (∥w(1)∥2 −∥w(T+1)∥2)+ γT ·n(1+C)2

2
+
γT
2

·
T∑

t=1

Lt

≤γT ·n(1+C)2

2
+
γT
2

·
T∑

t=1

Lt

(60)

where the last inequality holds since w(1) = 0.

For any a > 0, define ET (a) as the event that γT · |
∑T

t=1Lt| ≥ a. Since we have shown |Lt| ≤ Ĉ1

almost surely for each t and γT = T−( 12+ϵ) for some ϵ∈ (0,1/2), by Azuma’s inequality, we have

P (ET (a)) = P (γT · |
T∑

t=1

Lt| ≥ a)≤ 2 · exp(− a2

2Ĉ2
1

·T 2ϵ)

Note that the above inequality implies that

∞∑
T=1

P (ET (a))≤ 2 ·
∞∑

T=1

exp(− a2

2Ĉ2
1

·T 2ϵ)<∞

Then, by Borel-Cantelli Lemma, we know that P (
⋂∞

n=1

⋃∞
k=nEk(a)) = 0 for each a > 0. Thus, it

holds that

lim
T→∞

γT ·
T∑

t=1

Lt = 0 almost surely

when γT = T−( 12+ϵ) for some ϵ∈ (0,1/2), which completes our proof of (27).
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We then prove (28). To that end, we define, for each j ∈N and each τ = 1, . . . , T ,

ρj,τ = βj −
1

τ

τ∑
t=1

Rj(sj(ϕw(t) ,c, D̃t), D̃t
j).

Then (28) follows if limsupT→∞ ρj,T ≤ 0 almost surely for all j ∈ N . To that end, we first prove

that τρj,τ ⪯
w
(τ+1)
j

γT
, ∀j ∈ N for any τ ≥ 1, where a ⪯ b denotes random variable a is first-order

stochastic dominated by random variable b. Then, in Lemma 6 below, we show that for each j ∈N ,

limsupT→∞
w
(T+1)
j

TγT
= 0 almost surely.

We prove τρj,τ ⪯ 1
γT

·w(τ+1)
j by induction. When τ = 1, noticing that w(1) = 0, we have that

ρj,1 = βj −Rj

(
sj(ϕw(1) ,c, D̃1), D̃1

j

)
= w

(1)
j +βj −

[
Rj

(
sj(ϕw(1) ,c, D̃1), D̃1

j

)]
⪯
[
w

(1)
j +βj −Rj

(
sj(ϕw(1) ,c,D(1)),D

(1)
j

)]+
(since D(1) ∼ D̃1)

=
1

γT
·w(2)

j

Now assume that we have (τ − 1)ρj,τ−1 ⪯ 1
γT

·w(τ)
j , then

τρj,τ = (τ − 1)ρj,τ−1 +βj −Rj

(
sj(ϕw(τ) ,c, D̃τ ), D̃τ

j

)
⪯ (τ − 1)ρj,τ−1 +βj −Rj

(
sj(ϕw(τ) ,c,D(τ)), D̃

(τ)
j

)
(since D(τ) ∼ D̃τ )

⪯ 1

γT
·w(τ)

j +βj −Rj

(
sj(ϕw(τ) ,c,D(τ)), D̃

(τ)
j

)
≤
[
1

γT
·w(τ)

j +βj −Rj

(
sj(ϕw(τ) ,c,D(τ)), D̃

(τ)
j

)]+
=

1

γT
·w(τ+1)

j

Thus Tρj,T ⪯ 1
γT

·w(T+1)
j , ∀j ∈N , which completes the proof. □

Lemma 6. If c is feasible, then for any j ∈N , limsupT→∞
w
(T+1)
j

TγT
= 0 almost surely.

Proof: It follows from (56) and Assumption 3 that

∥w(t+1)∥2 ≤ ∥w(t)∥2 + γ2
T ·n(1+C)2 +Tγ2

T ·Lt

+2γT ·
∑
j∈N

(
w

(t)
j ·βj −w

(t)
j · ED(t)

[
R(sj(ϕw(t) ,c,D(t)),D

(t)
j )
])

Notice that

ED(t)

[∑
j∈N

w
(t)
j ·Rj(sj(ϕw(t) ,c,D(t)),D

(t)
j )

]
=
∑
j∈N

w
(t)
j · ED̃

[
Rj(sj(ϕw(t) ,c, D̃), D̃j)

]
(D(t) ∼ D̃)
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Also, from weak duality, it holds G(w(t))≤G(w∗)≤Obj (11). Then, we have that

∑
j∈N

w
(t)
j βj + ED̃

[
f(y(ϕw(t) ,c, D̃))

]
−
∑
j∈N

w
(t)
j ED̃

[
Rj(sj(ϕw(t) ,c, D̃), D̃j)

]
≤Obj (11)

When the capacity level c is feasible, the objective value of (11) is finite and we denote Ĉ2 as its

upper bound. Thus, we have that∑
j∈N

w
(t)
j βj −

∑
j∈N

w
(t)
j ED̃

[
Rj(sj(ϕw(t) ,c, D̃), D̃j)

]
≤Obj (11)− ED̃

[
f(y(ϕw(t) ,c, D̃))

]
≤ Ĉ2 (61)

Therefore, we must have

∥w(t+1)∥22 ≤ ∥w(t)∥22 + γ2
T ·n(1+C)2 +2γT · Ĉ2 +Tγ2

T ·Lt ∀t= 1,2, . . . , T (62)

Summing inequality (62) from t= 1 to T , we get

∥w(T+1)∥22 ≤ ∥w(1)∥22 +Tγ2
T ·n(1+C)2 +2TγT · Ĉ +Tγ2

T ·
T∑

t=1

Lt

Then, we have

1

T 2γ2
T

· ∥w(T+1)∥22 ≤
1

T
·n(1+C)2 +

2Ĉ

TγT
+

1

T
·

T∑
t=1

Lt (63)

Since we have shown |Lt| ≤ Ĉ1 almost surely for each t, we can again apply the combination of

Azuma’s inequality and the Borel-Cantelli lemma to show that

lim
T→∞

1

T
·

T∑
t=1

Lt = 0 almost surely

Thus, we have for each j ∈N ,

limsup
T→∞

w
(T+1)
j

TγT
= 0 almost surely

which completes the proof. □

Proof of Corollary 2. The proof of Corollary 2 follows the same main steps as that of Theorem

3 with minor modifications outlined below. Notice that Corollary 2, which focuses only on the

expected performance of Algorithm 1, is weaker than Theorem 3. Thus, Assumption 3, which is

needed for the proof of Theorem 3, is now replaced with a weaker condition, i.e., ED[Rj(sj, D̃j)
2]≤

C for all sj ≥ 0.

In particular, Assumption 3 is only used in Theorem 3 to prove the boundedness of Lt and

inequality (58). For the proof of Corollary 2, we can take expectation over w(t) and D(t) on both

sides of (56) and (58). Then (56) implies that Ew(t),D(t) [Lt] = 0 and thus bounded for each t . Also,
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inequality (58) holds in expectation as long as ED[Rj(sj, D̃j)
2] ≤ C for all sj ≥ 0, which is the

condition assumed in Corollary 2.

Then, (60) together with Ew(t),D̃(t) [Lt] = 0, directly imply the convergence rate on the expected

allocation cost should be O(γT ).

Finally, (63) implies, for any j,

E[
w

(T+1)
j

TγT
]≤O(max{

√
1

T
,

√
1

TγT
}).

Thus, we have

E[ρj,T ]≤ E[
w

(T+1)
j

TγT
]≤O(max{

√
1

T
,

√
1

TγT
}),

which proves the convergence rate on the expected service level. □

Appendix F: Discussion over the polymatroid assumption

A wide range of capacity allocation problems enjoys the polymatorid structure as illustrated below.

• In single-resource pooling, Q(c,D) is represented by (1). It is straightforward to see that

Q(c,D) can be reformulated as (29) with the corresponding submodular set function

q(U |c,D) =min{c,
∑
j∈U

Dj}.

• Consider a capacity planning problem of a more general directed network G= (V,E) where V

is the set of nodes and E is the set of arcs with |E|=m. There is a single supply node u∈ V

with unlimited capacity and a set of demand nodes N ⊂ V whose demands are random. The

problem is to decide the capacity ce of each arc e ∈ E in anticipation of random demands,

and route the supply from u through the arcs in E to satisfy the demand of N after demand

realization. For this problem, the feasible set Q(c,D) is

{s∈RN
+ :
∑
j∈U

sj ≤ q(U |c,D), ∀U ⊆N}

where q(U |c,D) is the total maximum flow from u to the demand nodes in U given the

capacity of arcs c= (ce : e∈E) and the demand realization D= (Dj : j ∈N ). It is well known

that Q(c,D) is a polymatroid (Megiddo, 1974; He et al., 2012). Specifically, when the network

is bipartite, the problem reduces to the process flexibility problem.

• In a special case of assemble-to-order system where Q(c,D) is represented by (3) and the

component consumption matrix is represented by (4), the corresponding submodular function

is

q(U |c,D) =min{cn+1,
∑
j∈U

min{cj,Dj}}.
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In all these examples, the submodular function q(U |c,D) for any U ⊆ N can be defined as the

maximum total fulfilled demand of all customers in the subset U using all available capacity c.

Given the above notations, we prove Theorem 4.

Proof of Theorem 4: Given the randomly selected weight vector w = w̃, and the realized

demand D, the Max-Weighted-Service policy fulfills the demands by solving the following Max-

Weighted-Service problem (16)

max
∑
j∈N

wj · aj(Dj)sj +wjbj(Dj)− vjsj (64)

s.t. s∈Q(c,D)

By Assumption 4, the feasible set Q(c,D) is a polymatroid. We denote the submodular set function

that defines the polymatroid Q(c,D) by q(U |c,D) and assume that

w1 · a1(D1)− v1 ≥w2 · a2(D2)− v2 ≥ · · · ≥wn · an(Dn)− vn.

Then it is well-known (Welsh, 2010) that the following solution is optimal to problem (64):

s∗1 = q({1}|c,D)

s∗j = q({1,2, · · · , j}|c,D)− q({1,2, · · · , j− 1}|c,D), j = 2, · · · , n

That is, the customers are fulfilled according to a non-increasing order of wj ·aj(Dj)− vj, which is

an index policy. □

We now show that when the service measure function Rj represents Type II service levels for

each j ∈N , a randomized anticipative index policy is not just asymptotically optimal, but actually

optimal. Indeed, for each T , we denote λ̃T as the uniform distribution over {ϕw(1) , . . . ,ϕw(T )}, where

{w(1), . . . ,w(T )} denotes the sequence of weights generated by Algorithm 1. From Theorem 4, we

know that each ϕw(t) can be characterized as a deterministic anticipative index policy. Obviously,

the total number of index lists is finite, denoted as L̂. Then, for each T , λ̃T can be regarded as

a L̂-dimensional vector in a compact set, thus the sequence {λ̃T}T→∞ must have a convergent

subsequence, and we denote λ̃ as the limit of this subsequence. Clearly, λ̂ denotes a randomized

anticipative index policy. Then from Theorem 3, the following two inequalities hold almost surely:∫
ϕ∈Φ

ED̃[f(y(ϕ,c, D̃))]dλ̃(ϕ)≤ limsup
T→∞

1

T
·

T∑
t=1

ED̃[f(y(ϕw(t) ,c, D̃))]≤Obj (11)

and∫
ϕ∈Φ

ED̃[Rj(sj(ϕ,c, D̃))]dλ̃(ϕ)≥ lim inf
T→∞

1

T
·

T∑
t=1

ED̃

[
Rj(sj(ϕw(t) ,c, D̃), D̃j)

]
≥ βj, ∀j ∈N .
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Thus, we conclude that λ̃ is an optimal solution to (11) almost surely.

Although λ̃ is optimal to the single period formulation (11) with probability 1, in practice, finding

the optimal solution λ̃ may require solving a large-scale linear programming and thus it may be

computationally inefficient. Instead, Theorem 3 shows that one can use the uniform distribution

λ̃T to approximate λ̃, which is asymptotically optimal as T →∞.

Appendix G: Proof of Theorem 5

Proof of Theorem 5: We denote by Objc(11) the objective value of (11) given capacity level c.

From Theorem 2, we have that

max
w≥0

H(w,c) =

{
p(c)+Objc(11), if (11) is feasible for c

+∞, if (11) is infeasible for c

Denote by c∗ one optimal solution of (10). Then, we have

Obj (10) = p(c∗)+Objc∗(11) =max
w≥0

H(w,c∗)≥min
c≥0

max
w≥0

H(w,c) (65)

Denote by ĉ one optimal solution of (31). Then, we have that

min
c≥0

max
w≥0

H(w,c) =max
w≥0

H(w, ĉ)<+∞

which implies that (11) is feasible under the capacity level ĉ. Thus, we have

min
c≥0

max
w≥0

H(w,c) =max
w≥0

H(w, ĉ) = p(ĉ)+Objĉ(11)≥Obj (10) (66)

As a result, we have Obj (10) =minc≥0maxw≥0 H(w,c), and all the inequalities in (65) and (66)

hold as equality, which implies that c∗ is an optimal solution to (31) and ĉ is an optimal solution

to (10). □

Appendix H: Proof of Lemma 2

Proof of Lemma 2. By definition, for any w≥ 0 and D,

g(w,c;D) = min f(y)−
∑
j∈N

wj ·Rj(sj,Dj) (67)

s.t. (s,y)∈ P (c,D)

Let (s∗(c), y∗(c)) be an optimal solution. (Here we assume thatw andD are fixed and thus drop the

dependence on them in (s∗(c), y∗(c)).) Then we have g(w,c;D) = f(y)−
∑

j∈N wj ·Rj(s
∗
j (c),D).

For any two points c1,c2 and any constant 0<α< 1,

(αs∗(c1)+ (1−α)s∗(c2)), ((αy∗(c1)+ (1−α)y∗c2)))
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must be a feasible solution to (67) when c = αc1 + (1 − α)c2. Then we have (αs∗(c1) + (1 −
α)s∗(c2), αy∗(c1)+(1−α)y∗(c2))∈ P ((αc1+(1−α)c2),D). Thus, from the concavity of Rj(sj,Dj)

in sj, we have that

αg(w,c1;D)+ (1−α)g(w,c2;D)

= (α · f(y∗(c1))+ (1−α) · f(y∗(c2)))−
∑
j∈N

wj · (αRj(s
∗
j (c

1),Dj)+ (1−α)Rj(s
∗
j (c

2),Dj))

≥ f(α ·y∗(c1)+ (1−α) ·y∗(c2))−
∑
j∈N

wj ·Rj(αs
∗
j (c

1)+ (1−α)s∗j (c
2),Dj)

≥ min
(s,y)∈P (αc1+(1−α)c2,D)

f(y)−
∑
j∈N

wj ·Rj(sj,Dj)

= g(w, αc1 +(1−α)c2;D)

We conclude that g(w,c; D̃) is convex in c for any w ≥ 0 and D̃, and thus H(w,c) is a convex

function of c for any w≥ 0. □

Appendix I: Asymptotic Bound

In this section, we consider inventory pooling with i.i.d. demand distribution, equivalent target

service level β, and Type I service constraints. We show that Corollary 1 can be used to obtain a

closed-form expression of the asymptotically optimal capacity level per customer when the number

of customers goes to infinity.

Theorem 7. For inventory pooling with n customers, assume that the demands are i.i.d. with a

common strictly increasing continuous distribution function F (·) and the Type I service level targets

are all equal to β. Then the per customer capacity level c∗ is asymptotic optimal as n→∞, where

c∗ = β ·max
ξ

{ξ− 1

β
ED̃[(ξ− D̃)+]}.

Morover, if the distribution function F (·) has a finite mean µ and a finite standard deviation σ,

then it holds that

βµ−
√
β(1−β)σ≤ c∗ ≤ βµ (68)

Proof: From Corollary 1, a given capacity level c is feasible is equivalent to the following

condition:

max
w≥0

∑
j

wjβj − ED̃[max
ϕ∈Φ

∑
j

wjRj(sj(ϕ,c, D̃), D̃j)]≤ 0 (69)

From the symmetry of the problem, (69) must have an optimal solution (w∗
j : j = 1, ..., n) such that

w∗
j =w∗

1 for any j ̸= 1. Thus, condition (69) is equivalent to

n ·β− ED̃[max
ϕ∈Φ

∑
j

Rj(sj(ϕ,c, D̃), D̃j)]≤ 0 (70)
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Note that by definition of Rj for Type I service constraints, the inner maximization problem in

(70) can be expressed as

M∗
n(c) :=max{|A| :

∑
j∈A⊂N

D̃j ≤ c}

and condition (70) is equivalent to

β ≤ 1

n
· ED̃[M

∗
n(c)] (71)

By Theorem 2.2 of Bruss and Robertson (1991), it holds that, for any α∈ (0,1),

lim
n→∞

1

n
E[M∗

n(n · c(α))] = α

where c(α) =
∫ F−1(α)

0
xdF (x). By setting α= β, we have

lim
n→∞

1

n
E[M∗

n(n · c(β))] = β

Comparing the above equality with (71), we concludes that the capacity level n ·c∗ is asymptotically

optimal as n→∞, where c∗ = c(β). Note that the following optimization is a concave maximization

problem,

max
ξ

{ξ− 1

β
ED̃[(ξ− D̃)+]} (72)

and the maximum is achieved by setting the derivative of the objective function with respect to ξ

to be 0. Denote by

Z(ξ) := ξ− 1

β
ED̃[(ξ− D̃)+]

the function within the min operation in (72), and denote by ξ∗ = argmaxZ(ξ). We have

∂

∂ξ
Z(ξ∗) = 1− 1

β
F (ξ∗) = 0,

which implies that ξ∗ = F−1(β). Thus, we have

max
ξ

{ξ− 1

β
ED̃[(ξ− D̃)+]}= 1

β
·
∫ F−1(β)

0

xdF (x) =
1

β
· c∗

We then bound c∗ and prove (68). Note that

βµ− c∗ = β ·
∫ ∞

0

xdF (x)−
∫ ξ∗

0

xdF (x) = β ·
∫ ∞

ξ∗
xdF (x)− (1−β) ·

∫ ξ∗

0

xdF (x)

≥ β ·
∫ ∞

ξ∗
ξ∗dF (x)− (1−β) ·

∫ ξ∗

0

ξ∗dF (x) = β(1−β)ξ∗ − (1−β)βξ∗ = 0

Then, we have c∗ ≤ βµ. Also from Cauchy inequality, we have that

(1−β) ·
∫ ∞

ξ∗
x2dF (x)≥ (

∫ ∞

ξ∗
xdF (x))2
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which implies

(1−β) · [µ2 +σ2 −
∫ ξ∗

0

x2dF (x)]≥ (µ−
∫ ξ∗

0

xdF (x))2

Thus, we have

(1−β)·(µ2+σ2)≥ (µ−
∫ ξ∗

0

xdF (x))2+(1−β)·
∫ ξ∗

0

x2dF (x)≥ (µ−
∫ ξ∗

0

xdF (x))2+
1−β

β
·(
∫ ξ∗

0

xdF (x))2

By arranging terms in the above inequality, we have

(βµ−
∫ ξ∗

0

xdF (x))2 ≤ σ2β(1−β)

Thus, it holds that

c∗ =

∫ ξ∗

0

xdF (x)≥ βµ−σ ·
√
β(1−β)

which completes our proof. □

Appendix J: Proof of Proposition 1

Suppose the capacity level c, together with a rationing policy ϕ̃
(1)
, is feasible for differentiated ser-

vice levels β = (β1, β2, . . . , βn). We say a policy ϕ̃
′
is the one-step rotation of policy ϕ̃ if sj(ϕ̃

′
, c,D) =

sj+1(ϕ̃, c,D), j = 1,2, . . . , n− 1, and sn(ϕ̃
′
, c,D) = s1(ϕ̃, c,D). Let ϕ̃

(k+1)
be the one-step rotation

of ϕ̃
(k)

for all k from 1 to n− 1. Since demand distributions are i.i.d., ϕ̃
(k)

must be feasible for

service levels (βk, βk+1, . . . , βn, β1, β2, . . . , βk−1). Thus the randomized policy that chooses ϕ̃
(k)

with

probability 1
n
, for each k = 1,2, . . . , n, can achieve a service level β̂ = 1

n

∑n

j=1 βj for each customer

j ∈N . Henceforth, the optimal capacity level with uniform target service level β̂ = 1
n

∑
j∈N

βj for all

customer j is less than or equal to c. □


	Introduction
	Problem Formulation
	Previously Known Results and Closely Related Literature
	Our Results

	Randomized Rationing Policy and Problem Reformulation
	Max-Weighted-Service Policy
	Polymatroid and Index Policies

	Computing Optimal Capacity Level
	Numerical Results
	Convergence Rate of SA Algorithm under Type II and Type III Service Levels
	Inventory Pooling with Type I Service Constraints
	Flexible Production with Type I Service Constraints
	Heuristic for Assemble to Order

	Conclusions
	Proof of Lemma 1
	Proof of Theorem 2
	Proof of Lemma 3
	Examples

	Proof of Theorem 3
	Discussion over the polymatroid assumption
	Proof of Theorem 5
	Proof of Lemma 2
	Asymptotic Bound


	Proof of Proposition 1

